

Recent Updates in Anesthetic Management of Coagulation Disorders in Obstetric Patients

Essay

Submitted for Partial Fulfillment the Master Degree in Anesthesia

By

Maram Osama Mohamed Abd Elbary

M.B. B. Ch.

Supervised by

Prof. Dr. Hala Gomaa Salama Awad

Prof. of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Sherif George Anis Said

Assistant Prof. of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Hany Magdy Fahim Hanna

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2018

- 🖎 First and last praise to Allah.
- It is a great honor to express my sincere gratitude and appreciation to **Prof Dr. Hala Gomaa Salama**Awad, Prof. of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her unfailing interest, untiring help, keen supervision and support.
- I am grateful to **Prof. Dr. Sherif George Anis**Said, Assistant Prof. of Anesthesia and Intensive
 Care, Faculty of Medicine, Ain Shams University,
 for his kind suggestion and scientific supervision.
- Hanna, Lecturer Prof. of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work
- Tinally this work could not have happened without My family and my dear friends who always supported me in everything.

Contents

Subjects	Page
List of abbreviations	
List of Tables	VI
List of Figures	VII
Introduction	1
Review of literature	
o Chapter (1): Physiology of Coagulat	ion Process 4
o Chapter(2): Pathophysiology of	Coagulation
Disorders	28
o Chapter (3): Recent Strategies	in Anesthetic
Management of Coagul	ation Disorders
in Obstetric Patients	65
Summary	107
References	110
Arabic Summary	

List of Abbreviations

A : Current amplitude

A5 A10, and : Amplitude at specific minute interval; ten and

A15 fifteen minutes

AA : Arachidonic acid

ACC/AHA : American College of Cardiology/American Heart

Association

ACS : Acute coronary syndromes

ADAMTS13 : A Disintegrin And Metalloproteinase with

Thrombospondin type 1 motif, member 13

ADP : Adenosine diphosphate

AFLP : Acute fatty liver of pregnancy

Alpha : α -angle

AMR : Ashwell- Morrell receptor

APC : Activated protein C

aPTT : Activated partial thromboplastin time

ASRA: American Society of Regional Anesthesia and Pain

Medicine

ATP : Adenosine triphosphate

cAMP : Cyclic adenosine monophosphate

CFT : Clot formation time

CI : Coagulation index

CT : Clotting time

E List of Aberrations &

cTTP : Congenital Thrombocytopenic Purpura

DDAVP : Desmopressin

Deg : Degree

DIC: Disseminated intravascular coagulopathy

EPCR : Endothelial protrein c receptor

EPL : Estimated per cent lysis

ESA : European Society of Anesthesiologists

ESC: European Society of Cardiology.

EVs : Extracellular vesicles

FAO : Fatty acid oxidation

FAOD : Fetal fatty acid oxidation defects

FDA : Food and drug adminstration

fdp : Fibrin-degradation products

FEIBA : Factor Eight Inhibitor Bypassing Activity

FFP: Fresh frozen plasma

G: Clot strength

GPIb : Glycoprotein 1 beta

GPVI : Glycoprotein VI

HDL : High-density lipoprotein

HELLP: Hemolysis elevated liver enzymes and low platelet

count

HIT : Heparin-induced thrombocytopenia

HMWK: High-molecular-weight kiningen

E List of Aberrations &

Humate-P: Antihemophilic factor—von Willebrand factor

complex

HUVEC: Human umbilical vein endothelial cells

IL-1b : Interlukin 1 beta

INR : International normalized ratio

ITP : Idiopathic thrombocytopenic purpura

K : Kinetics time

LCHAD : Long-chain 3-hydroxyacyl-CoA dehydrogenase

deficiency

LMWH : Low-molecular-weight heparin

LY30 : Clot lysis at 30 minutes

LY60 : Clot lysis at 60 minutes

MA : Maximal amplitude

MCAD : Medium chain acyl-CoA dehydrogenase

MCF : Maximum clot firmness

MTP : Mitochondrial trifunctional protein

NLRP3 : Nuclitide binding domain and lucine rich repeat

containing proteins

PAF : Platelet-activating factor

PAI : Plasminogen activator inhibitor

PCC: Prothrombin complex concentrate

PE: Phosphatidylethanolamine

PF4 : Platelet factor 4

Pg : Plasminogen

Suist of Aberrations &

PGI2 : Prostacyclin

PIVKAs: Proteins formed in vitamin K absence

PLA2 : Phospholipase A2

Pm: Plasmin

PMA : Projected maximal amplitude

PPH : Post partum hemorrhage

PS: Phosphatidylserine

PT : Prothrombin time

R : Reaction time

RCoA : Ristocetinco factor

rFVIIa : Recombinant activated factor VII

RIPA: Ristocentin-induced platelet aggregation

ROS : Reactive oxygen species

ROTEM: Thromboelastometry

SCAD : Short chain acyl-CoA dehydrogenase

sFlt-1 : Soluble fms tyrosine kinase-1

TAFI: Thrombin-activatable fibrinolysis inhibitor

TEC: Thromboembolic complications

TEG: Thromboelastography

TF: Tissue factor

TFPI: Tissue factor pathway inhibitor

TM : Thrombomodulin

t-PA : Tissue plasminogen activator

TPO: Thrombopoeitin receptors

E List of Aberrations &

TTP: Thrombocytopenic purpura

TXA : Tranexamic acid

TXA2 : Thromboxane A2

UFH : Unfractionated heparin

VKAs: Vitamin K antagonist

VKORC: Vitamin K epoxide reductase

VLCAD : Very long chain acyl-CoA dehydrogenase

VLDL : Very low-density lipoprotein

VTE : Venous thrombo embolism

vWF : Von Willebrand factor

VII : Stable factor

IX : Christmas factor

XI : Plasma thromboplastin

XII : Hagman factor

XIII : Fibrin stabllizing factor

List of Tables

Table No.	Title	Page No.
Table (1)	Hemostatic changes during pregnancy	25
Table (2)	Von Willebrand disease types	29
Table (3)	Fetal fatty acid oxidation defects reported to be associated with AFLP	45
Table (4)	Management strategy for women of childbearing age with prosthetic heart valves	49
Table (5)	Commonly used thromboelastography and thromboelastometry parameters	69
Table (6)	Management of antithrombotic therapy for neuraxial procedures	94
Table (7)	Guide to blood product replacement in massive obstetric hemorrhage	99

List of Figures

Figure No.	Title	Page
1190101100		
Figure (1)	Classical blood coagulation pathway	4
Figure (2)	Involvement of multiple adhesion	11
	receptor ligand interactions in platelet	
	aggregation under high shear flow	
Figure (3)	Distinct mechanisms initiating platelet	13
	aggregation at various shear rates	
Figure (4)	Fibrinolysis (simplified).	21
Figure (5)	Intrapartum versus postpartum	27
	thromboelastography values among	
	women in established labor at a	
	pregnancy duration of more than 37	
	weeks	
Figure (6)	Catalysis of antithrombin-mediated	52
	inactivation of thrombin or factor Xa	
	by UFH or LMWH.	
Figure (7)	Maternal and fetal factors should be	55
	taken into consideration when	
	initiating or maintaining	
	anticoagulantion.	

🕏 List of Figures 🗷

Figure No.	Title	
riguie ivo.		
Figure (8)	Comparison between normal	56
	endothelium and placental trophoblast	
Figure (9)	Thromboelastography.	67
Figure (10)	A typical thromboelastogram and	68
	thromboelastogram curve from a	
	patient without coagulopathy with	
	normal indices	
Figure (11)	Desmopressim mechanism of action	77
Figure (12)	rFVIIa mechanism of action	104

Introduction

The process of hemostasis is complex and is further complicated in the parturient because of the physiological changes of pregnancy. Understanding these changes and the impact that they have on the safety profile of the anesthetic options for labour and delivery is crucial to any anesthetist caring for the parturient (*Abbassi et al.*, 2009).

These changes include physiological anemia and fluctuating coagulation factor concentrations alter the balance between bleeding and clot formation in preparation for peripartum blood loss (*Prisco et al.*, 2005).

Coagulopathy may be caused by reduced levels or absence of blood-clotting proteins, known as clotting factors or coagulation factors. Genetic disorders, such as hemophilia and Von Willebrand's disease, can cause a reduction in clotting factors. Anticoagulants such as warfarin will also prevent clots from forming properly. Coagulopathy may also occur as a result of dysfunction or reduced levels of platelets (small disk-shaped bodies in the bloodstream that aid in the clotting process) (*Spahn et al.*, 2013).

Thromboelastography and rotational thromboelastometry are point of-care tests used to measure whole blood coagulation, including fibrinolysis. Thromboelastography is useful because it encompasses, and is sensitive to, all the cellular and plasma factors in whole blood involved in clot formation and degradation. It is widely used within a number of hospital settings including intensive care and among patients undergoing liver and cardiac surgery (*Figueroa et al.*, 2014).

Although attempts at establishing peripartum reference ranges for rotational thromboelastometry have been made, these ranges have not yet been widely accepted or validated. There are few longitudinal data demonstrating how the normal hemostatic changes that occur throughout pregnancy and the puerperium affect thromboelastography parameters (*Antony et al.*, 2015).

It has long been postulated that women become hypercoaguable as pregnancy progresses, but how these changes directly affect clot mechanics is poorly understood. It has been confirmed the hypercoaguable status of women at term through thromboelastography analysis. Similarly, a shift toward hypercoagulability as measured by thromboelastography and rotational thromboelastometry

has been reported in uncomplicated pregnancies as pregnancy advances (*Sharma et al.*, 2013).

Globally, postpartum hemorrhage (PPH) is the leading cause of maternal morbidity and mortality. In the UK, PPH with blood loss of more than 500 mL occurs in approximately 18% of births, with approximately 4% of births being associated with significant PPH, defined as blood loss of more than 1000 mL. Although there is a growing a focus on thromboelastography/rotational thromboelastometry in guiding PPH management, uptake of this technology for clinical use in obstetric units has been slow (*Allard et al.*, *2014*).

The overall estimated risk of epidural or spinal hematoma after neuraxial anesthesia in the obstetric population is 1:168000 (*Ruppen et al.*, 2005).

The instances of anesthesia-related spinal hematoma in pregnant and non-pregnant patients and found that it most often occurred in patients with coagulopathies (68%) (*Hoffman et al.*, 2007).

The anesthetic management of the obstetric patient with hematologic disease requires establishing a plan for anesthesia that incorporates the patient's specific hematologic problem, comorbidities, and the obstetric situation (*O Riordan et al.*, 2005).

Physiology of Coagulation Process

Coagulation is the process by which blood changes from liquid to a gel, forming a blood clot. It begins almost instantly after an injury to the blood vessel has damaged the endothelium lining the vessel. Leaking the blood through the endothelium initiates two processes: changes in platelets, exposure of subendothelial tissue factor to plasma factor VII, which ultimately leads to fibrin formation.

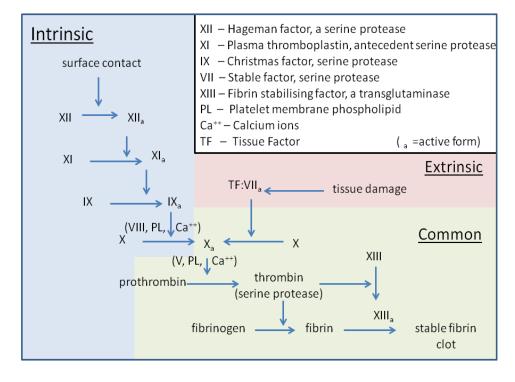


Figure (1): Classical blood coagulation pathway (Pallister and Watson, 2010).