

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

University of Assiut Faculty of Science Department of Geology

MINERALOGICAL, GEOCHEMICAL AND SEDIMENTOLOGICAL CHARACTERISTICS OF LAKE NASSER SEDIMENTS, EGYPT

A THESIS

PRESENTED BY

NAZEH NAGUIB GINDY

B. Sc.; M. Sc. (GEOLOGY)
National Institute of Oceanography and Fisheries

To

The Department of Geology, Faculty of Science, University of Assiut

For The Degree of Doctor of Philosophy of Science (Geology)

Supervised by

. Prof. Dr. Emad R. Philobbos

Professor of Sedimentology,
Faculty of Science,
University of Assiut

Prof. Dr. Ezzat A. Ahmed

Professor of Sedimentology, Faculty of Science, University of Assiut

Prof. Dr. Mohamed El Dardir

Head of Geology Lab., Fresh Water and Lakes Division National Institute of Oceanography and Fisheries

2001

B

NYEV

University of Assiut Faculty of Science Department of Geology

APPROVAL SHEET

Name

: Nazeh Naguib Gindy

Thesis Title: Mineralogical, Geochemical and Sedimentological

Characteristics of Lake Nasser Sediments, Egypt.

Degree

: The Degree of Doctor of Philosophy of Science (Geology)

Supervisors

1- Prof. Dr. Emad Ramzy Philobbos

Professor of Sedimentology, Faculty of Science, University of Assiut

2- Prof. Dr. Ezzat Abd Allah Ahmed

Professor of Sedimentology, Faculty of Science, University of Assiut

3- Prof. Dr. Mohamed El Dardir Mohamed Ali

Head of Geology Lab., National Institute of Oceanography and Fisheries

Examination Committee

External:

1- Prof. Dr. S.Awad

(Faculty of Science, University of Ain Shams)

2- Prof. Dr. A.M. Abu Khadrah

(Faculty of Science, University of Cairo)

Internal:

1- Prof. Dr. Emad Ramzy Philobbos

(Faculty of Science, University of Assiut)

2- Prof. Dr. Ezzat Abd Allah Ahmed

(Faculty of Science, University of Assiut)

Prof. Dr. M.B.Mazen

Vice – Dean for Graduate Studies and Research

To MY FAMILY

ACKNOWLEDGEMENT

I do thank ALMIGHTY GOD for all the gifts He gave me.

I wish to express my deep gratitude for **Prof. Dr. Emad R. Philobbos**, Head of Department of Geology, Faculty of Science, Assiut University, for supervision, planning the point of research, critical reading of the manuscript and for finalizing the thesis.

My appreciation and deep gratitude are due to **Prof. Dr. Ezzat A. Ahmed**, Department of Geology, Faculty of Science, Assiut University, for his supervision, planning the point of research, continuous encouragement and advice during the progress of the laboratory work, as well as reading and revising the manuscript.

My special thanks are also due to **Prof. Dr. Mohamed El Dardir**, Head of Geology Laboratory National Institute of Oceanography and Fisheries, Ministry of Scientific Research, for supervision, suggesting the subject of this thesis, his valuable advice and encouragement during the progress of the field and laboratory work.

My gratitude is also extended to **Dr. Adel W. Felesteen**, Assoc. Prof., Department of Geology, Aswan Faculty of Science, South Valley University, for his help and advice during the preparation and analysis of the total organic carbon content.

Thanks are due to **Prof. Dr. I. M. Amin**, President of the National Institute of Oceanography and Fisheries (NIOF), **Prof. Dr. A. Elewa**, President of Fresh Water and Lakes Division (NIOF), **Prof. Dr. S. A. Kamel**, Director of Inland Water and Aquaculture Branch (NIOF) and to **Prof. Dr. H. A. Soliman**, former Head of the Department of Geology, Assiut University, for their encouragement and facilities provided.

Many thanks are also due to my colleagues in the Lake Nasser research station for their help during collecting the samples.

CONTENTS

	Page
CHAPTER ONE: INTRODUCTION	1
1.1. Lake Nasser	1
1.2. Bottom Outline of Lake Nasser	4
1.3. Water Level and Capacity of Lake Nasser	6
1.4. Previous Work	11
1.5. Scope of the Present Study	27
CHAPTER TWO: PHYSICO - CHEMICAL CHARACTERISTICS	
OF LAKE NASSER WATER	31
2.1. Introduction	31
2.2. Materials and Methods	. 33
2.3. Results and Discussion	. 33
2.4. Conclusion	46
CHAPTER THREE: CHEMISTRY OF INTERSTITIAL WATERS IN	
CORED BOTTOM SAMPLES	- 65
3.1. Introduction	65
3.2. Materials and Methods	65
3.3. Results and Discussion	. 66
3.4. Conclusion	70
CHAPTER FOUR: GRAIN SIZE ANALYSIS	83
4.1. Introduction	83
4.2. Materials and Methods	85
4.3. Results	86
4.3.1. Grain- size parameters	86
4.3.2. Bivariate plots	94
4.3.3. C-M Diagram	97
4.4. Discussion	98
4.5. Conclusion	101
CHAPTER FIVE: HEAVY MINERALS	
5.1. Introduction	134
5.2. Materials and Methods	136
5.3. Results of Heavy Minerals Analysis	138
5.4. Results of SEM and XRD Investigations	147
5.5. Discussion	148
5.6. Conclusion	
CHAPTER SIX: CLAY MINERALOGY	
6.1. Introduction	
6.2. Materials and Methods	
6.3. Results	
6.4. Distribution	190

	Page
6.5. Discussion	191
6.6. Conclusion	193
CHAPTER SEVEN: GEOCHEMISTRY	204
7.1. Total Organic Carbon Content	204
7.1.1. Introduction	204
7.1.2. Materials and Methods	207
7.1.3. Results and Discussion	207
7.2. Major Oxides and Trace Elements	210
7.2.1. Introduction	210
7.2.2. Materials and Methods	211
7.2.3. Results and Discussion	212
7.3. Summary	230
7.4. Conclusion	230
SUMMARY AND CONCLUSIONS	265
REFERENCES	272
ARABIC SUMMARY	

LIST OF TABLES

		Page
Table (1):	Annual maximum, minimum and average water levels in meters (above m.s.l.) of Lake Nasser in the period (1966-1996). Data of High Dam Authority.	8
Table (2):	Monthly average variations of water levels in meters (above m.s.l.) in Lake Nasser recorded during the sampling period (January, 1993- December, 1994). Data of High Dam Authority.	8
Table (3):	Secchi disc readings (in cm) recorded for waters of the main channel of Lake Nasser during the period of spring 1993 to winter 1994.	49
Table (4):	Monthly variations of air temperature (in °C) recorded during the period of April 1993 to March 1994 (compiled from Meteorological Department records).	49
Table (5):	Temperature and electrical conductivity of waters of the main channel of Lake Nasser during the period of spring 1993 to winter 1994.	50
Table (6):	Vertical and horizontal distribution of dissolved oxygen (mg/L) recorded for waters of the main channel of Lake Nasser during the period of spring 1993 to winter 1994	51
Table (7):	pH values, anions and cations (mg/L) of waters of the main channel of Lake Nasser during the period of spring 1993 to winter 1994.	52
Table (8):	Annual average of pH values, anions and cations (mg/L) of waters of the main channel of Lake Nasser during the period of spring 1993 to winter 1994.	53
Table(9):	Comparison between the average conductivity, pH values, alkalinity, Cl ⁻ , Ca ⁺⁺ and Mg ⁺⁺ in the studied water samples of the main channel of Lake Nasser with those of other African	
Table (10):	Lakes	53 72
Table (11):	pH values, anions and cations (mg/L) in the water column at the main channel of Lake Nasser during summer 1993	73
Table(12):	Comparison of the averages of pH values and HCO ₃ , CO ₃ , Cl, Ca ⁺⁺ and Mg ⁺⁺ contents of the water column of Lake Nasser with those of the interstitial waters of cored bottom sediments.	74

		Page
Table(13):	Comparison of the chemical composition of the interstitial waters in (mg/L) of the cored bottom sediments of Lake Nasser with those of Lake Balaton (Central Europe) and Lake Turkana (Kenya).	74
Table (14):	Percentages of sand, silt and clay of the analyzed bottom sediments during spring, summer and autumn 1993 and winter 1994.	104
Table (15):	Percentages of sand, silt and clay of the analyzed core sediments during summer 1993.	105
Table (16):	The phi-values (\$\phi\$) obtained from the probability curves of the analyzed bottom samples.	107
Table (17):	The phi-values (φ) obtained from the probability curves of the analyzed core samples (summer 1993)	108
Table (18):	Grain- size parameters calculated according to Folk and Ward's (1957) equations of the analyzed bottom samples	110
Table (19):	Grain- size parameters calculated according to Folk and Ward's (1957) equations of the analyzed core samples	112
Table (20):	Grain- size image of the analyzed bottom samples according to Passega (1957 & 1964).	114
Table (21):	Grain- size image of the analyzed core samples according to Passega (1957 & 1964).	115
Table (22):	Water velocity (ms/Sec) in Aswan High Dam reservoir during spring and autumn of 1982, summer of 1985 and winter of 1995 (compiled from High Dam Authority, Aswan, Egypt, 1982 _a , 1985 and 1995).	116
Table (23):	Relative abundance of heavy minerals in the 63-125 µm size fraction of bottom sediments.	154
Table (24):	Average percentages of heavy minerals in the 63 -125 µm size fraction of bottom sediments.	157
Table (25):	Relative abundance of heavy minerals in the 63-125 µm size fraction of core sediments.	158
Table (26):	Average percentages of heavy minerals in the 63 -125 µm size fraction of core sediments.	161

		Page
Table(27):	Average percentages of major heavy minerals in the studied bottom and core sediments compared with the main Nile, Nile tributaries, Lake Nasser khors and High Dam lake sediments	162
Table(28):	Pyroxene (^I Pyr), Amphibole (^I Amph) and Epidote (^I Epd) indices of the studied bottom and core sediments (calculated using the formulae of Hassan, 1976).	163
Table (29):	Percentages of pyroxenes, amphiboles and epidotes in the studied bottom samples.	164
Table(30):	Percentages of pyroxenes, amphiboles and epidotes in the studied core samples.	165
Table (31):	Index of transportation of Opaques, Amphiboles and Epidotes (I ₁) of the studied bottom sediments (calculated using the formulae of Gewaifel et al., 1981).	166
Table (32):	Index of transportation of Pyroxenes (I ₂) and of Epidotes (I ₃) of the studied bottom sediments (calculated using the formulae of Gewaifel et al., 1981).	166
Table (33):	Average of index of transportation of Opaques, Amphiboles and Epidotes (I ₁) of the studied bottom sediments (calculated using the formulae of Gewaifel et al., 1981)	167
Table (34):	Average of index of transportation of Pyroxenes (I ₂) and of Epidotes (I ₃) of the studied bottom sediments (calculated using the formulae of Gewaifel et al., 1981).	167
Table (35):	Index of transportation of Opaques, Amphiboles and Epidotes (I ₁) of the studied core sediments (calculated using the formulae of Gewaifel et al., 1981).	168
Table (36):	Index of transportation of Pyroxenes (I ₂) and of Epidotes (I ₃) of the studied core sediments (calculated using the formulae of Gewaifel et al., 1981).	168
Table (37):	Hydraulic fractionation ratios of the studied bottom sedimets (calculated using the equations of Flores and Shideler, 1978)	169
Table (38):	Average of hydraulic fractionation ratios of the studied bottom sediments (calculated using the equations of Flores and Shideler, 1978).	170
Table (39):	Hydraulic fractionation ratios of the studied core sediments (calculated using the equations of Flores and Shideler, 1978)	170

		Page
Table (40):	Percentages of the identified clay minerals in bottom samples	195
Table (41):	Percentages of the identified clay minerals in core samples	195
Table (42):	Organic carbon content of the analyzed bottom sediment samples collected during autumn 1993.	233
Table (43):	Organic carbon content of the analyzed core sediment samples obtained during summer 1993.	234
Table (44):	Correlation coefficient (r) of organic carbon content and size fractions for bottom sediment samples.	235
Table (45):	Correlation coefficient (r) of organic carbon content and size fractions for core sediment samples.	235
Table (46):	Percentages of major oxides of bottom samples.	236
Table (47):	Trace elements content (in ppm) of bottom samples	238
Table (48):	Trace elements content (in ppm) of core samples	240
Table (49):	Correlation coefficient (r) of some chemical components for bottom samples.	242
Table (50):	Correlation coefficient (r) of organic carbon content and trace elements for bottom sediment samples.	243
Table (51):	Correlation coefficient (r) of organic carbon content and trace elements for core sediment samples.	243
Table (52):	Comparison between the organic carbon content in sediments of Lake Nasser and some other African Lakes.	244
Table (53):	Comparison of the average content of major oxides in the clay fraction of the studied bottom sediments of Lake Nasser with similar oxides in sediments of River Nile and some other natural lakes.	244
Table(54):	Comparison of the average trace elements content (in ppm) in the clay fraction of the studied sediments of Lake Nasser with similar elements in sediments of some other natural lakes.	
	lithosphere and River Nile.	245
