EFFECT OF BURNER QUARL GEOMETRY ON FLAME BEHAVIOR IN AXISYMMETRIC FURNACES

by

Eng. Ebram Boshra Hanna Tadrous

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2015

EFFECT OF BURNER QUARL GEOMETRY ON FLAME BEHAVIOR IN AXISYMMETRIC FURNACES

by

Eng. Ebram Boshra Hanna Tadrous

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr. Essam E. Khalil Hassan Khalil
Prof. Dr. Mohamed Mahmoud Ali Hassan Dr. Hatem Omar Hareedy
Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

EFFECT OF BURNER QUARL GEOMETRY ON FLAME BEHAVIOR IN AXISYMMETRIC FURNACES

by

Eng. Ebram Boshra Hanna Tadrous

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

MECHANICAL POWER ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil Thesis Advisor

Prof. Dr. Mohamed Mahmoud Ali Hassan Thesis Advisor

Prof. Dr. Abdel Hafez Hassanein Abdel Hafez Member

Prof. Dr. Hany Ahmed Monib Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2015

Engineer: Ebram Boshra Hanna Tadrous

Date of Birth: 01 / 10 / 1990

Nationality: Egyptian

E-mail: eng_ebram.boshra@yahoo.com

Phone: 01204442202

Address: 7 Kasab St, Haram, Giza, Egypt

Registration Date: 01 / 10 / 2012

Awarding Date: / / Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mohamed Mahmoud Ali Hassan

Dr. Hatem Omar Hareedy

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mohamed Mahmoud Ali Hassan Prof. Dr. Abdel Hafez Hassanein Abdel Hafez

Prof. Dr. Hany Ahmed Monib

Title of Thesis:

Effect of Burner Quarl Geometry on Flame Behavior in Axisymmetric Furnaces

Key Words: CFD, Recirculation Zone, Pollutants, Velocity Vectors

Summary: Combustion engines design mainly depends on achieving high combustion efficiency, taking into account pollutants concentrations resulting from combustion process. Researchers always try new ways to design efficient combustion chambers by studying the effects of changing different variables like burner position, direction, design, the quality of fuel used, and its impact on the performance of combustion systems. Many researches dealt with studying these flames either practically or theoretically and came to understanding the prevalence of these flames. The thesis contains a numerical study to simulate the combustion process in non-premixed flame of natural gas burner of 300 kW gas turbine, using computational fluid dynamics program (Ansys Fluent 14). The combustion chamber of the gas turbine is a cylinder of diameter 1.07 m, and a length of 1.6 m ending with conical shape until you reach cylinder diameter of 0.3 m, with a length of 0.7 m, where the exit of combustion products. The model was divided into a mesh of about 1.7 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-E equations to express the turbulence. To ensure high accuracy, the results were compared to the experimental ones. The study contains the effect of four variables on the efficiency of the combustion process. It was found that there are two zones of recirculation. The primary one is at the center of the furnace and the position of the secondary one varies by changing the quarl angle of the burner. It was found that the increase in temperature in the secondary recirculation zone increases by increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation specially nitrogen monoxide. And we did not find a clear effect of any variable on the stability of the flame due to the perpendicular direction of fuel and air entry.

ACKNOWLEDGEMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for his generousness and support through all my life.

I would like to thank Prof. Dr. Essam E. Khalil Hassan Khalil, Prof. Dr. Mohamed Mahmoud Ali Hassan, and Dr. Hatem Hareedy for their guidance and unremitting encouragement. I am grateful to them, and to all my respectful professors, for mentoring me throughout my undergraduate and graduate studies.

I extend my gratitude to Eng. Abdallah Abdel Atty for his valuable suggestions and noteworthy discussions. Thanks are also to my colleagues for their encouragement and support.

Finally, I owe a lifelong debt to my parents, and my brothers for their motivation through finishing this thesis, their patience, and care, and for maintaining a perfect environment for study and research.

TABLE OF CONTENTS

Acknowledgement	V
Nomenclature	XIV
Abbreviations	XVI
Abstract	XVII
1. INTRODUCTION	
1.1 General	1
1.2 Objectives	3
2. LITERATURE REVIEW	
2.1Introduction	4
2.2 Previous experimental works	4
2.3 Previous numerical works	14
2.4 Relevance of present work to the literature review	23
3. MATHEMATICAL MODEL	
3.1 Fluid Element	26
3.2 Mass Conservation Equation (Continuity)	27
3.3 Momentum Conservation Equation	27
3.4 Energy Conservation Equation	27
3.5 Species Transport Equation	28
3.6 Turbulence Modeling	29
3.61 Realizable k- ε Model	29
3.7 Modeling of swirl flow	30
3.8 Non-premixed combustion modelling	30
3.8.1 The eddy dissipation model	31
3.8.2 Equilibrium and flamelet mixture fraction model	31

3.8.3 Mixture Fraction Theory
3.8.4 Transport Equations for the Mixture Fraction
3.8.5 Description of the Probability Density Function
3.8.6 The Flamelet Concept
3.8.7 Flamelet Generation
3.9 Radiation modelling
3.9.1 The P-1 model equations
4. VALIDATION
4.1 Introduction to Validation activities
4.2 Validation activities on Berl Burner
4.2.1 Present Validation Results
4.2.2 Results at 27 mm downstream from burner quarl
4.2.3 Results at 343 mm downstream from burner quarl
5. RESULTS AND DISCUSSION
5.1 Introduction
5.2 Presented case study results
5.2.1 Changing swirl angles
5.2.1.1 Swirl number of s=0
5.2.1.2 Swirl number of s=0.1
5.2.1.3 Swirl number of s=0.35
5.2.1.4 Swirl number of s=0.56
5.2.1.5 Swirl number of s=0.8
5.2.1.6 Temperature Contours
5.2.1.7 Velocity Vectors
5.2.1.8 Mole Fractions of various species
5.2.1.9 Observations
5.2.2. Changing Burner Ouarl angles

5.2.2.1 Quarl angle =5 degrees	69
5.2.2.2 Quarl angle =15 degrees	69
5.2.2.3 Quarl angle =20 degrees	69
5.2.2.4 Quarl angle =30 degrees	70
5.2.2.5 Temperature Contours	71
5.2.2.6 Velocity Vectors	73
5.2.2.7 Contours of mole fractions of various species	75
5.2.2.8 Temperature variation with radius at 27 mm downstream	79
5.2.2.9 Observations	81
5.2.3 Flue gas recirculation	82
5.2.3.1 Observations	83
5.2.3.2 NOx formation	84
5.2.4 Changing Burner Tip depth	86
5.2.4.1 (58 mm) Burner Tip depth	87
5.2.4.2 (15 mm) Burner Tip depth	89
5.2.4.3 Observations	91
6. CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK	
6.1 Summary	92
6.2 Conclusions of changing swirl angles for air stream	92
6.3 Conclusions of changing quarl angles of the burner	92
6.4 Conclusions of changing bluff body depth	92
6.5 Conclusions of flue gas recirculation	93
6.6 Proposals for further future work study	94
References	95

LIST OF FIGURES

Figure 2.1: Schematic furnace design.	.5
Figure 2.2: Schematic sketch of Berl burner design	.5
Figure 2.3: Tangential velocity variations with radius at different positions from quarl exit (s=0.56, quarl angle=20°c)	6
Figure 2.4: Axial velocity variation with radius at different positions from quarl exit (s=0.56, quarl angle=20°c)	6
Figure 2.5: Temperature contours (K)	.7
Figure 2.6: Combustion chamber model	.8
Figure 2.7: Scheme of flow regime	.9
Figure 2.8: Schematic diagram of different exit arrangements and fuel injection locations (top section at 4D and front section at cylinder axis)	10
Figure 2.9: Pollutant emissions for normal exit. (a) NO and (b) CO	10
Figure 2.10: Pollutant emissions for axial exit. (a) NO and (b) CO	11
Figure 2.11: Two-element Chemical Reactor Network for the BERL 300 kW test	12
Figure 2.12: Effect of the air preheating (left) and turndown operation (right) on the NOx emissions of the CRN.	13
Figure 2.13: Sensitivity analysis of the CRN to air injection into internal recirculation (left) and to recycled fraction of flue gas (right)	13
Figure 2.14: Burner Quarl Geometry	15
Figure 2.15: Measured [10] and Predicted [8] Radial Profiles of Radial Velocity component and axial and tangential Velocity components in the Burner Quarl of SHELL Furnaces	15
Figure 2.16: Measured [10] and Predicted [8] Radial Profiles of Radial Velocity component and Pressure in the Burner Mouth of SHELL Furnaces	16
Figure 2.17: Schematic Representation of the conical Furnace of Paauw	17
Figure 2.18: Measured [9] and Predicted [8] Velocity Profiles in the Furnace of Paauw.	18
Figure 2.19: Measured [9] and Predicted [8] Temperature Profiles in the Furnace of Paauw	18
Figure 2.20 Measured [11] and Predicted [8] Velocities in the Combustor of Mohan	19
Figure 2.21: Radial concentrations at 27 mm downstream of burner	20
Figure 2.22: Radial concentrations at 343 mm downstream of burner	21

Figure 2.23: Predicted streamlines for non-reacting flow	22
Figure 2.24: 2-D and 3-D name predictions at 27mm downstream of the quarl exit	24
Figure 2.25: 2-D and 3-D name predictions at 343mm downstream of the quarl exit	25
Figure 3.1: Fluid element for conversation laws	26
Figure 3.2: The probability density function of f and the time trace of mixture fraction at a point in the flow	
Figure 3.3: Turbulent flame	34
Figure 4.1: BERL Furnace geometry	40
Figure 4.2: IFRF 300 Kw Gas Burner geometry	40
Figure 4.3: Meshing of BERL Furnace	43
Figure 4.4: Temperature variation with radius at 27 mm downstream of burner	44
Figure 4.5: Axial velocity variations with radius at 27 mm downstream of burner	45
Figure 4.6: Tangential velocity variations with radius at 27 mm downstream of burner	45
Figure 4.7: variations of normalized mole fraction of O2 with radius at 27 mm downstream of burner	46
Figure 4.8: variations of normalized mole fraction of CO2 with radius at 27 mm downstream of burner	46
Figure 4.9: variations of normalized mole fraction of CO with radius at 27 mm downstream of burner	46
Figure 4.10: Temperature variation with radius at 343 mm downstream of burner	47
Figure 4.11: variations of normalized mole fraction of CO2 with radius at 343 mm downstream of burner	48
Figure 4.12: Contours of CO2 mole fractions	48
Figure 5.1: Temperature contours (s=0)	53
Figure 5.2: Temperature contours (s=0.1)	54
Figure 5.3: Temperature contours (s=0.35)	55
Figure 5.4: Temperature contours (s=0.56)	56
Figure 5.5: Temperature contours (s=0.8)	57
Figure 5.6: Velocity vectors (s=0)	58
Figure 5.7: Velocity vectors (s=0.1)	58
Figure 5.8: Velocity vectors (s=0.35)	59

Figure 5.9: Velocity vectors (s=0.56)
Figure 5.10: Velocity vectors (s=0.8)
Figure 5.11: Contours of mole fraction of various species (s=0)61
Figure 5.12: Contours of mole fraction of various species (s=0.1)
Figure 5.13: Contours of mole fraction of various species (s=0.35)63
Figure 5.14: Contours of mole fraction of various species (s=0.56)
Figure 5.15: Contours of mole fraction of various species (s=0.8)65
Figure 5.16: Temperature variation with radius at 27 mm downstream for different swirl angles
Figure 5.17: Exit temperature variation with swirl number
Figure 5.18: Changing quarl angle
Figure 5.19: Temperature contours (quarl angle=5°)
Figure 5.20: Temperature contours (quarl angle=15°)
Figure 5.21: Temperature contours (quarl angle=20°)
Figure 5.22: Temperature contours (quarl angle=30°)
Figure 5.23: Velocity vectors (quarl angle=5°)
Figure 5.24: Velocity vectors (quarl angle=15°)
Figure 5.25: Velocity vectors (quarl angle=20°)
Figure 5.26: Velocity vectors (quarl angle=30°)
Figure 5.27: Contours of mole fraction of various species (quarl angle=5°)75
Figure 5.28: Contours of mole fraction of various species (quarl angle=15°)76
Figure 5.29: Contours of mole fraction of various species (quarl angle=20°)77
Figure 5.30: Contours of mole fraction of various species (quarl angle=30°)78
Figure 5.31: Temperature variation with radius at 27 mm downstream (quarl angle=5°).79
Figure 5.32: Temperature variation with radius at 27 mm downstream (quarl angle=15°).79
Figure 5.33: Temperature variation with radius at 27 mm downstream (quarl angle=20°).80
Figure 5.34: Temperature variation with radius at 27 mm downstream (quarl angle=15°).80
Figure 5.35: Temperature variation with radius at 27 mm downstream for different quarl angles
Figure 5.36: Flue gas recirculation adjustment

Figure 5.37: Exhaust gases temperature (at exit) variation with percentage of recirculated flue gases	83
Figure 5.38: Rate of NO formation per mass of fuel variation with percentage of recirculated flue gases	85
Figure 5.39: Changing burner tip depth	86
Figure 5.40: Temperature contours (burner tip depth =58 mm)	87
Figure 5.41: Temperature variation with radius at 27 mm downstream	
(burner tip depth =58 mm)	88
Figure 5.42: Velocity vectors (burner tip depth =58 mm)	88
Figure 5.43: Temperature contours (burner tip depth =15 mm)	89
Figure 5.44: Temperature variation with radius at 27 mm downstream	
(burner tip depth =15 mm)	90
Figure 5.45: Velocity vectors (burner tip depth =15 mm)	90
Figure 6.1: Using staging gas	94

LIST OF TABLES

Table 4.1: Air and Fuel inlet conditions	41
Table 4.2: Natural gas properties	41
Table 4 3: Wall thermal conditions	42

Nomenclature

Symbols and Quantities

A	Sonic speed, m/s
C	Constant
c_p	Constant pressure specific heat, KJ/ (Kg \cdot K)
D	Diffusion coefficient
E	Total Energy of fluid particle, N
G	Acceleration of gravity, m/s ²
$\sigma_{{\scriptscriptstyle S}\lambda}$	Spectral scattering coefficient
G_{λ}	Spectral incident radiation
Н	Enthalpy, KJ/Kg
\vec{J}_i	Diffusion flux of species i
n	Refractive index of the medium
M	Mach number
Mw	Molecular Weight
P	Pressure, Pa
Pr	Prandtl number
σ	Stefan-Boltzmann constant
R_i	Rate of production of species i
S	Source term
Sc	Schmidt number
T	Temperature, K
u_j	Velocity magnitude in direction of x_j , m/s
$ec{v}$	Velocity vector
Y_i	Mass fraction of species i
x, y, z	Cartesian co-ordinate components
K	Thermal conductivity, W/ (m·K)

Greek Letters

Δ	Boundary Layer thickness
$\bar{\bar{ au}}$	Stress tensor
σ	Turbulent Prandtl number
μ	Dynamic viscosity, N.s/m2
ρ	Density,Kg/m ³
∇	Gradient
β	Thermal expansion coefficient

Superscripts and Subscripts

_	Mean property
,	Fluctuating component of any property
В	Buoyancy
[Counter
lj .	Indicates two different Cartesian coordinates
K	Turbulent kinetic energy
M	Mass, Kg
P	Point node property
Γ	Turbulent quantity
W	Wall property
Ц	Dynamic viscosity