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Summary: Combustion engines design mainly depends on achieving high combustion
efficiency, taking into account pollutants concentrations resulting from combustion
process. Researchers always try new ways to design efficient combustion chambers by
studying the effects of changing different variables like burner position, direction, design,
the quality of fuel used, and its impact on the performance of combustion systems. Many
researches dealt with studying these flames either practically or theoretically and came to
understanding the prevalence of these flames. The thesis contains a numerical study to
simulate the combustion process in non-premixed flame of natural gas burner of 300 kW
gas turbine, using computational fluid dynamics program (Ansys Fluent 14).The
combustion chamber of the gas turbine is a cylinder of diameter 1.07 m, and a length of 1.6
m ending with conical shape until you reach cylinder diameter of 0.3 m, with a length of
0.7 m, where the exit of combustion products. The model was divided into a mesh of about
1.7 million cells. The numerical simulations were performed by solving the governing
equations in a three-dimensional model using realizable K-E equations to express the
turbulence. To ensure high accuracy, the results were compared to the experimental ones.
The study contains the effect of four variables on the efficiency of the combustion process.
It was found that there are two zones of recirculation. The primary one is at the center of
the furnace and the position of the secondary one varies by changing the quarl angle of the
burner. It was found that the increase in temperature in the secondary recirculation zone
increases by increasing the swirl number of the inlet air stream. Also it was found that
recirculating part of the combustion products back to the combustion zone decreases
pollutants formation specially nitrogen monoxide. And we did not find a clear effect of any
variable on the stability of the flame due to the perpendicular direction of fuel and air
entry.
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