

Experimental Studies on Constant Volume Depletion of Gas-Condensate Systems

A thesis submitted for the fulfillment of Master Degree of Science in Analytical Chemistry

BY

Mohamed Abd El-Moneim Mohamed El Aily

B. Sc. of Chemistry (2005)
Faculty of Science
Ain shams University

Experimental Studies on Constant Volume Depletion of Gas-Condensate Systems

BY

Mohamed Abd El-Moniem Mohamed El Aily B. Sc. Chemistry (2005)

This thesis submitted for the fulfillment of Master Degree of Science in inorganic and Analytical Chemistry and has been approved by:

Prof. Dr. Mostafa M. H. Khalil

Professor of Inorganic and Analytical Chemistry Faculty of science, Ain shams University

Prof. Dr. Saad M. Desouky

Professor of Product Department, Egyptian Petroleum Research Institute

Prof. Dr. Mahmoud H. Batanoni

Professor of Product Department, Egyptian Petroleum Research Institute

Date of examination: / /

Head of Chemistry Department **Prof. Dr. Maged Shafik Antonious Nakhla**

This thesis has not been previously submitted for any degree at this or any other university.

Mohamed Abd El-Moneim Mohamed El Aily

Acknowledgement

First of all, great thanks and praise to *Allah* for giving me prosperity and strength to fulfill this work.

All appreciation and dept are to *Prof. Dr. Mostafa Mohamed Hassan Khalil*; Professor of Analytical Chemistry, Inorganic and Analytical Chemistry Department, Faculty of science, Ain shams University, for his valuable supervising, encouragement and sincere help through all stages of the study.

All gratitude and thanks are to *Prof. Dr. Saad El-Din M. Desouky*; Professor of Product Department, Egyptian Petroleum Research Institute, for his much appreciated supervising, effective guidance, offering facilities and fruitful discussions in all steps of this study.

Special thanks and are to *Prof. Dr. Mahmoud H. Batanoni*; Professor of Product Department, Egyptian Petroleum Research Institute, for following up the details and his valuable help until the completion of this work.

Special gratitude and acknowledgement are to *Dr. Mahmoud R. M. Mahmoud* for following up the details and his great help during the experimental work.

Special gratitude and acknowledgement are to *Eng. Salah Abd El-Rauof Baker* for following up the details and his great help during the experimental work.

Many thanks are to the Chairman, Professors, doctors and staff members of Chemistry Department, Faculty of Science, Ain Shams University, Product Department and PVT Services Center, Egyptian Petroleum Research Institute.

Contents

	Title	Page
	Abstract	
	Chapter I	4
	INTRODUCTION AND LITERATURE SURVEY	1
I.1.	Gas Condensate	1
I.2.	Fluids Reserves, Production and Consumption	1
I.2.1.	Gas Reserves, Production and Consumption	2
I.2.2.	Oil Reserves, Production and Consumption	2
I.3.	Phase Diagram of Gas Condensate	4
I.4.	PVT Study	7
I.5.	Dewpoint Pressure	7
I.6.	Condensate Recovery (Liquid Dropout)	9
I.7.	Empirical Correlations	9
I.7.1.	Working Charts	10
I.7.1. 1.	Kurata and Katz ; 1942	10
I.7.1. 2.	Sage and Olds ;1947	11
I.7.1. 3.	Reamer and Sage; 1950	14
I.7.1. 4.	Organick and Golding; 1952	17
I.7.1. 5.	Potsch and Braeuer; 1997	18
I.7.2.	Mathematical Expression	20
I.7.2.1.	Nemeth and Kennedy; 1967	20
I.7.2.2.	Humoud et al; 2001	22
I.7.2.3.	Elsharkawy ; 2002	23
I.7.2.4.	Marruffo et al.; 2002	24
I.7.2.5.	Ovalle et al.;2007	25
I.7.2.6.	Al-Dhamen et al; 2011	26
I.7.2.7.	Cho et al.; 1985	27
I.8.	Equation of State	27
I.8.1.	Historical Introduction to Equations of State (EOS)	28
I.8.1.1.	Van der Waals (vdW) EOS	29
I.8.1.2.	Soave-Redlich-Kwong (SRK) EOS	32
I.8.1.3.	Peng-Robinson (PR) EOS	39
I.9.	Regression and Statistical Analysis	41
I.9.1.	Linear Multiple Regression	41
I.9.2.	Nonlinear Multiple Regression	44
I.10.	Statistical Error Analysis	46
I.10.1.	Average Percent Relative Error	46
I.10.2.	Average Absolute Percent Relative Error	47

I.10.3.	Minimum and Maximum Absolute Percent Relative	47
I.10.4.	Standard Deviation	48
I.10.5.	The Root Mean Square Error	49
I.10.6	The Correlation Coefficient	49
I.11.	Graphical Error Analysis (Crossplot)	50
1.11.	CHAPTER II	51
	MATERIALS AND METHODS	
II.1.	Equipments	51
II.1.1.	Mercury free PVT Cell	51
II.1.2.	Hydraulic Pump	52
II.1.3.	Gasmeter	52
II.1.4.	Density Metter	53
II.1.5.	Molecular Weight	53
II.1.6.	Gas Chromatography analysis for Gas & Liquid	55
II.2.	Types of laboratory tests	56
II.2.1.	Sample Validation	57
II.2.1. II.2.2.	Primary tests	57
II.2.2.1.	Atmospheric Flashing of Separator liquid sample	57
II.2.2.2.	Compositional analysis of the system	58
II.2.2.2.1.	Gas Chromatographic Analysis of Hydrocarbons	59
II.2.2.2.2.	Liquid Chromatographic Analysis of Hydrocarbons	60
II.2.3.	Routine laboratory tests	60
II.2.3.1.	Constant-Composition Expansion	62
II.2.3.1.	Constant Volume Depletion	64
11.2.3.2	CHAPTER III	66
	RESULT AND DISCUSSION	
III.	PVT Study	66
III.1.	Field Data	66
III.1. III.2.	Lab Data (Measured Data)	66
III.2.1.	Validity Check	66
III.2.1. III.2.2.	Primary Study	69
III.2.2.1.	Determination of GOR_{diss} , β_o , Density of stock tank oil,	69
111.2.2.1.	API° and MW _{STO}	00
III.2.2.2.	Composition Analysis of Dissolved gas and	70
	Determination of Dissolved Gas Gravity	. 0
III.2.2.3.	Measured of Composition Analysis of Stock Tank Oil	73
III.2.2.4.	Determination of Super Compressibility Factor and	75
	Specific Gravity of Separator Gas	. 3
III.2.3.	Calculation of Reservoir Fluid (Well-stream) Composition	78
	Analysis, Molecular Weight and Gas Gravity of C ₇₊	-
III.2.4.	Pseudocritical Properties	80

III.2.5.	Constant Mass Depletion (CMD) to Determine	83
	Dewpoint Pressure P _d	
III.2.6.	Constant Volume Depletion (CVD) to Determine	84
	Condensate Recovery (LDO)	
III.3.	Data Acquisition	85
III.4.	Development of New Correlations	87
III.4.1.	Development of New Dewpoint (P _d) Correlation	87
III.4.2.	Development of New Condensate Recovery (LDO %)	91
	Correlation	
III.5.	Evaluation of Existing Correlations	95
III.5.1.	Statistical Error Analysis	95
III.5.1.1.	Statistical Accuracy of Dewpoint pressure Correlations	95
III.5.1.2.	Statistical Accuracy of Condensate Recovery (LDO)	97
	Correlations	
III.5.2.	Graphical Error Analysis (Crossplot)	98
III.5.2.1.	Graphical Error Analysis of Dewpoint Pressure	98
III.5.2.2.	Graphical Error Analysis of Condensate Recovery	103
III.6.	Validity of the New Correlations	104
III.6.1.	Validity of the New Dewpoint Pressure Correlation	105
III.6.2.	Validity of the New Condensate Recovery Correlation	106
	Conclusion	108
	References	110
	Summary	I
	Arabic Summary	i

List of figures

Figure	Description	Page
Figure 1	Egyptian Natural Gas Production and Consumption 1999-2009	2
Figure 2	Different Areas of Egyptian Oil Production	3
Figure 3	Egypt's Total Oil Production and Consumption 1999-2010	4
Figure 4	Phase Diagram of a Typical Retrograde Gas with line of Isothermal Reduction of Reservoir pressure, 123, and Surface Separator Conditions. [McCain, 1990]	5
Figure 5	Influence of Gas-Oil Ratio and Tank-oil gravity upon Retrograde Dewpoint at 160 °F	13
Figure 6	Influence of Gas-Oil-Ratio upon Retrograde Dewpoint Pressure of System E.	15
Figure 7	Influence of Temperature upon Retrograde Dewpoint Pressure of System E.	15
Figure 8	Influence of Gas-Oil-Ratio upon Retrograde Dewpoint Pressure of System A.	16
Figure 9	Influence of Temperature upon Retrograde Dewpoint Pressure of System A.	16
Figure 10	New Technique for Determination of the Dewpoint via mole versus Pressure.	20
Figure 11	Saturation Pressure versus Temperature at Wm = 50.	21
Figure 12	Mercury Free PVT Cell	51
Figure 13	Hydraulic Pump	52
Figure 14	Gasmeter	52
Figure 15	Density Metter (DMA 4500)	53
Figure 16	Molecular Weight (CRYTTE WR TM)	54
Figure 17	Schematic Representation of Molecular Weight	55
Figure 18	Gas Chromatography analysis for Liquid	56
Figure 19	Gas Chromatography analysis for Gas	
Figure 20	Scheme of Gas Chromatograph	58
Figure 21	Schematic of the Phase Behavior Cell	61
Figure 22	Constant Composition Expansion	62
Figure 23	Constant Volume Depletion	65

Figure 24	Pressure Volume Relationship of Separator	68
	Condensate Sample at Separator Temperature	
Figure 25	Pressure - LDO V % Curve of Condensate	94
	Recovery Correlation (This Study)	
Figure 26	Crossplot of Dewpoint Pressure	99
	Correlation (Nemeth and Kennedy)	
Figure 27	Crossplot of Dewpoint Pressure	99
	Correlation (Humoud)	
Figure 28	Crossplot of Dewpoint Pressure	100
-	Correlation (A.M.Elsharkawy)	
Figure 29	Crossplot of Dewpoint Pressure	100
	Correlation (Marruffo)	
Figure 30	Crossplot of Dewpoint Pressure	101
	Correlation (Ovalle)	
Figure 31	Crossplot of Dewpoint Pressure Equation	101
	of State (PR)	
Figure 32	Crossplot of Dewpoint Pressure Equation	102
-	of State (SRK)	
Figure 33	Crossplot of Dewpoint Pressure	102
	Correlation (This Study)	
Figure 34	Pressure - LDO V % Curve	103
Figure 35	Pressure - LDO V % Curve	104

List of tables

Table	Description	Page
Table 1	Relation of Dewpoint Pressure of California Gas Condensate Systems.[Sage and Olds	11
	;1947]	
Table 2	Physical Properties of Compounds.[Nnaemeka Ezekwe; 2010]	37
Table 3	Field Data	66
Table 4	Validity Check of Separator Gas	67
Table 5	Pressure Volume Relationship of Separator Condensate Sample at Separator Temperature	68
Table 6	Primary Study Data	70
Table 7	Compositional Analysis of Dissolved Gases to C ₁₁₊	72
Table 8	Compositional Analysis of Stock Tank Oil to C ₃₆₊	74
Table 9	Gas Formation Volume Factor and super	75
	compressibility factor of separator gas	
Table 10	Compositional Analysis of Separator Gas Sample to C_{11+}	77
Table 11	Compositional Analysis of Well stream to C ₃₆₊	79
Table 12	Compositional Analysis of Well stream Sample to C_{7+}	80
Table 13	Molecular weight and Gas gravity of C_{7+} by Eqs. (71) & (72)	80
Table 14	Pseudocritical pressure ,Pseudocritical	82
	temperature, Reduced pressure and Reduced Temperature of well stream	
Table 15	Pressure – Condensate Recovery (LDO) V % relationship during CVD at Reservoir temperature	85
Table 16	Ranges of gas-condensate production and PVT data	86
Table 17	Pressure – Condensate Recovery (LDO) V % relationship	94
Table 18	Statistical Accuracy of Dewpoint Pressure Correlations for the Data Used in Model Development	96

Table 19	Statistical Accuracy of condensate recovery	97
	LDO Correlation for the Data Used in	
	Model Development	
Table 20	Statistical accuracy of P _d correlations for the	105
	data used in model validation	
Table 21	Statistical Accuracy of LDO Correlations for	106
	the Data used in model validation	

ABBRIVIATION

List of Symbols Description

American Petroleum Institute API

bbl/d Barrels per day

Constant Mass Depletion Constant Volume Depletion CMD CVD FID Flame ionization detector

GOR Total Gas to Oil Ratio, SCF/STB Dissolved Gas to Oil Ratio, SCF/STB **GOR**_{diss} Separator Gas to Oil Ratio, SCF/STB **GOR**_{sep}

IDS Interface Detection System

Liquid Drop Out LDO

Natural logarithm (base e) Ln

The Molecular Weight of heptanes plus M_{C7+}

Pressure

Critical pressure of component i, psia P_{ci}

Pseudocritical pressure, psia Ppc Dew point pressure, psia P_d

PIONA Paraffin, Isoparaffin, Olefin, Naphthine and Aromatic Ppr Pseudoreduced pressure of the gas mixture, psia

Separator Pressure, psia P_{sep}

Peng-Robinson Equation Of State PR-EOS

Pressure-Volume- Temperature **PVT**

Universal gas constant R

Separator producing gas/oil ratio , SCF/SP bbl Standard Cubic Feet / Stock Tank Barrels $\mathbf{R}_{\mathsf{sep}}$ SCF/STB **SRK-EOS** Soave-Redlich-Kwong Equation Of State

T Temperature

 T_{ci}

Tpc

 T_{pr}

Critical temperature of component i, °R
Pseudocritical temperature, °R
Pseudoreduced temperature of the gas mixture, °R
Reservoir temperature, °R
Separator temperature, °R T_R T_{sep} Thermal conductivity detector **TCD**

Tcf Trillion cubic feet V Molar volume

Volume of separator gas at separator condition ,cc $(Vg)_{sep}$ Volume of separator gas at standard condition,cc $(Vg)_{sc}$ Y_i Mole fraction of component i in the gas mixture Super compressibility factor of separator gas Z_{sep}

Specific gravity of heptanes-plus fraction (air =1.0) γ_{C7+}

 γ_{diss} Average specific gravity of dissolved gas (air = 1.0) γ_{sep} Average specific gravity of separator gas (air = 1.0)

γ_g Specific gravity of reservoir gas

 β_g Separator gas formation volume factor

β₀ Shrinkage Volume Factor

ω Acentric Factor

List of Subscript

C₇₊ Property of heptanes plus fraction

i Mole fraction of component i; in gas mixture

diss Dissolved Gas

g Gas

Pc Pseudocritical
Pr Pseudoreduced
Sc Standard condition

Sep Separator

ABSTRACT

Name: Mohamed Abd El-Moniem Mohamed El-Aily Title: Experimental Studies on Constant Volume Depletion of Gas-Condensate Systems

This study presents new empirical models to estimate dewpoint pressure P_d and condensate recovery for gas condensate reservoirs as a function of routinely measured gas analysis and reservoir temperature. The proposed models were developed based on field and laboratory PVT analysis data of 202 gas-condensate fluid samples representing different gas reservoirs and wide range of gas properties and reservoir temperatures. Statistical error analysis was used to determine the accuracy of the models. The evaluation shows that the correlation coefficient of P_d correlation is 0.9896 and of condensate recovery (Liquid Drop Out) is 0.9878 In addition, results of the proposed models were compared with those published in the literature and ensured its success for capturing the physical trend of gas-condensate systems, and consequently is considered as the most reliable one for petroleum industry. The accuracy of the models has been also compared to Soave Redlich Kwong equation of state (SRK-EOS) and Peng Robinson equation of state (PR-EOS). Gas condensate samples not included in the development of the new correlations have been used to check the validity of the proposed models.

Keywords:

Dew Point Pressure, Condensate Recovery, Gas Condensate, Empirical Correlation, Equation of State.