ARTHROSCOPIC MANAGEMENT OF ACROMIOCLAVICULAR JOINT ARTHRITIS

Thesis submitted for fulfillment for MD degree in orthopaedic surgery

By

Ahmed Mansour Darweash

M.B.B.ch.,MSc orthopaedic surgery

Under supervision of:

Prof. Dr. Ahmed Abdel Aziz

Professor of orthopaedic surgery Cairo University

Prof. Dr. Khaled Shohayeb

Professor of orthopaedic surgery Cairo University

Dr. Ahmed Rizk Mohamed

Lecturer of Orthopaedic Surgery Cairo University

Faculty of Medicine – Cairo University 2012

Acknowledgment

First of all, I wish to express my sincere thanks to **Allah**. The most merciful he is.

I would like to express my deepest thanks to *Prof. Dr. Ahmed Abdel Aziz*, professor of orthopedics, Cairo University, Faculty of Medicine for his great help and kind encouragement to complete my work, and support.

I would like also to express my great thanks to *Prof. Dr. Khaled shohayeb* professor of orthopedics, Cairo University,

Faculty of Medicine for his kind supervision and continuous guidance all through my work.

I would like to express my great thanks to *Dr. Ahmed Rizk Mohamed*, lecturer of orthopedics, Cairo University, Faculty of Medicine for continuous teaching and kind supervision.

I would like to express my great thanks to *my wife* for offering help and care

Also I didn't forget to thanks all of my colleagues helped me in this work.

Ahmed Mansour M Darweash

Abstract

In this study, we describe a technique for arthroscopic treatment of injuries of a traumatic or degenerative nature that frequent affect the AC joint and may affect shoulder function. These injuries can be divided into those related to direct or indirect trauma and those related to repetitive stress or degenerative conditions that affect virtually all diarthrodial joints. Most conditions affecting the AC joint can be treated conservatively, but chronic conditions affecting shoulder function and athletic activity may require operative intervention.

Open or arthroscopic techniques may be necessary to deal with AC joint pathology and late degenerative conditions. The results of such treatment are excellent, but attention to surgical technique is necessary to avoid complications.

Key words

- 1- Acromioclavicular joint
- 2- Shoulder arthroscopy
- 3- Arthritis

Table of Contents

Subject		
Acknowledgment	Ι	
• Introduction	1	
Historical review of painful shoulder	3	
Anatomy and biomechanics	6	
Arthroscopic anatomy	18	
Acromioclavicular joint Arthritis	25	
Patients and Methods	65	
• Results	82	
• Discussion	94	
Case presentation	102	
Summery and conclusion	107	
• References	109	
الملخص العربي •	Í	

Table of Tables

	Title	Page
Table 1	subjective and objective variables of constant score	32
Table 2	Score of forward flexion	33
Table 3	Abduction score	34
Table 4	external rotation score	34
Table 5	Internal rotation score	35
Table 6	Patient satisfaction	88
Table 7	Relation of age to Constant score	92
Table8	Relation of type of work to Constant score	93
Table 9	Relation of sex to Constant score	93
Table 10	Relation of dominant side to Constant score	94
Table 11	Relation of duration of complain to Constant score	95
Table 12	preoperative and postoperative score for	106
	case No1	
Table 13	Preoperative and postoperative score for case 2	107

Table of figures

		Title	Page
Fig	1)	Anatomy of the acromioclavicular joint	7
Fig	2)	Bony and ligamentous structures of the acromioclavicular joint	8
Fig	3)	Histologic section of the AC joint	10
Fig	4)	Instability of the distal clavicle in the horizontal plane	14
Fig	5)	Arthroscopic view of anterior structures of shoulder joint	20
Fig	6)	Biceps tendon Arthroscopic view	21
Fig	7)	The axillary pouch	22
Fig	8)	Subacromial landmarks Arthroscopic view	24
Fig	9)	The Bell-van Riet (BvR) test	30
Fig	10)	Method of measuring strength	36
Fig	11)	Device for measuring strength	37
Fig	12)	IDO Isometer	37
Fig	13)	Zanca view of the AC joint	39
Fig	14)	Radiograph of acromioclavicular joint demonstrating degenerative arthritis.	40
Fig	15)	Axillary view of shoulder	40
Fig	16)	Normal outlet & abnormal outlet view	41
Fig	17)	Normal magnetic resonance appearance of the osseous outlet	42
Fig	18)	Acromial types	44
Fig	19)	Axis of the acromion in the sagittal plane.	45
Fig	20)	Axis of the acromion in the coronal plane	46
Fig	21)	Acromial osteophyte	46
Fig	22)	Acromioclavicular joint, degenerative change.	49
Fig	23)	Osteolysis of the distal clavicle	50
Fig	24)	beach chair position	56
Fig	25)	Arthroscopic portals of shoulder	57
Fig	26)	Localization of the acromioclavicular joint. Arthroscopic view	58
Fig	27)	Arthroscopic view of undersurface of the acromion and AC joint	60
Fig	28)	Direct approach of A C joint	62
Fig	29)	Chart of Male to Female ratio	66

Fig	30)	Chart of patients and their jobs	66
Fig	31)	Chart of dominant and non-dominant side	67
Fig	32)	Beach-chair position of shoulder	71
Fig	33)	examination under anesthesia	71
Fig	34)	Draping and sterilization.	72
Fig	35)	Drawing the surface anatomy	72
Fig	36)	Insertion of the trocar and canula through soft spot	73
Fig	37)	Posterior portal for the scope and lateral portal for the acromionizer.	73
Fig	38)	Tow spinal needles inserted as landmarks of A C joint	74
Fig	39)	Arthroscopic view: Inflamed Subacromial bursa	75
Fig	40)	Arthroscopic view acromioplasty of medial facet	75
Fig	41)	Intraoperative measurement of the subacromial space	76
Fig	42)	Arthroscopic view: Acromioplasty from the undersurface of the acromion using acrominizer.	79
Fig	43)	Chart of Pain score	83
Fig	44)	Chart of ADL score	84
Fig	45)	Chart of Return to activities	84
Fig	46)	Chart of Power score	86
Fig	47)	Chart of Pre&postop ROM	87
Fig	48)	Chart of pre &post op Constant score	88
Fig	49)	chart of age distribution	89
Fig	50)	Chart of relation of dominant side to Constant score	91
Fig	51)	Chart of duration of complain	92
Fig	52)	plain X ray AP and Lateral Y-view left shoulder	105
Fig	53)	MRI coronal cut showing acromial spur & cuff tendinopathy	106
Fig	54)	Preoperative limited Range of movement	107
Fig	55)	Plain X-ray Rt shoulder with narrow subacromial space	108
Fig	56)	MRI of the Rt Shoulder shows osteoarthiritis of the AC Joint	108

Introduction

Introduction

Degenerative disease of the acromioclavicular joint is extremely common condition and is an age related phenomenon (>40 years). Fortunately in most this is not a painful condition. However, in a small number of cases the degenerative changes (osteoarthritis) within this joint may result in severe shoulder pain. The pain associated with acromioclavicular joint osteoarthritis is usually felt directly over this joint. It is aggravated by heavy lifting or moving the arm into extremes range of movements. This condition classically gives rise to a painful arc in full abduction, which is unlike subacromial impingement syndrome in which the pain is in mid abduction. Full adduction across the chest or reaching for the back pocket is often particularly painful. Symptoms frequently interrupt sleep, especially when turning into the affected shoulder. The diagnosis could be confirmed by abolishing the pain using a local anesthetic injection into this joint. Other conditions such as rotator cuff tear are frequent associations and require assessment with appropriate investigations such as MRI or shoulder ultrasound.

Initial treatment consists of 6 to 12 months of physical therapy, nonsteroidal anti-inflammatory drugs, avoidance of exacerbating activities, and other conservative modalities. The majority of patients respond well, but a few remain unable to return to their previous or desired activity levels. Previously this group of patients underwent open resection of the distal clavicle. The approach

violates the deltotrapezial fascia, weakening the surgically treated extremity, which has caused controversy in the literature. Even without complications, the recovery and time away from work is prolonged.

With advances in arthroscopic techniques, resection of the distal clavicle and medial aspect of the acromion has become possible with minimal invasiveness. The arthroscopic technique offers the advantages of rapid rehabilitation with excellent functional results.

Objectives

- To study the arthroscopic technique for treatment of AC joint arthritis
- To investigate the advantage of this method
- To evaluate the clinical outcome of the procedure

Historical Review

Historical review of painful shoulder

From the past, many authors tried to study the different pathological problems related to shoulder dysfunction: but the exact etiology was not clearly understood. (Bigliani et al; 1997)

Smith 1834, was the first who described the ruptured supraspinatus, he thought that his injury is due to trauma. (**Skoff 1995**)

Hamilton 1875 was the first who identified the acromial morphology as a potential source of symptoms in the shoulder. Goldthwait 1909 proposed a mechanical attritional theory for the etiology of bursitis and indicated the importance of the length and slope of both the acromion and coracoid. In 1909 he described the difference in shape and slopes in the acromion. Meyer in 1922 and 1931 proposed that, tears of the rotator cuff occurred secondary to attrition, as a result of friction with the under surface of the acromion, due to over use. Codman 1934 developed an interest in the subdeltoid bursa during a trip to Vienna whilst in his third year of medical school, described the anatomy of this bursa and its clinical relevance. **Codman 1934,** defined the critical zone where most of degenerative changes occur, as a portion of the rotator cuff located one cm. medial to the insertion of the supraspinatus on the greater tuberosity. Armstrong 1949 introduced the term (supraspinatus syndrome) and proposed that, the condition should be treated with a total acromionectomy. Mclaughlin and Asherman 1951 developed the lateral acromionectomy to relieve impingement on the rotator cuff. However procedure doesn't involve removal of the anterior portion of the acromion, which nowadays is responsible for impingement. Diamond

1964 noted that the acromion could be a cause of symptoms in the shoulder and suggested acromionectomy also as a solution. The disappointing results of complete acromionectomy and lateral acromionectomy, stimulated Neer in 1972 to focus on the under surface of the acromion. He focused on the cause-effect relationship between acromial-morphology & acromial Neer for the first time in the history described the impingement. subacromial impingement syndrome as a distinct clinical entity. He hypothesized that the rotator cuff is impinged upon by the anterior one third of the acromion, the coracoacromial ligament and the acromioclavicular joint, rather than by just the lateral aspect of the acromion. He also suggested that the portion of the rotator cuff which is impinged upon is centered on the insertion of the supraspinatus tendon on the greater tuberosity. (Henry, C. Lea;1997)

In the early eighties of the last century, **Neer** had discovered also that excessive removal of acromial bone has been associated with complications and unsatisfactory results. **Neer 1983** described three pathological stages of impingement. **Neer** in the late eighties of the last century, had divided the impingement into outlet and non outlet lesions, and he clarified the outlet impingement that the coraco-acromial arch encroaches on the supraspinatus outlet, while the non outlet, where impingement occurs secondary to thickening or hypertrophy of the bursa or the rotator cuff tendon. **(Henry, C. Lea;1997)**

Ellman 1985 described the first arthroscopic anterior acromioplasty as an alternative treatment to open acromioplasty. In the nineties of the last

century, progress had taken place in the arthroscopy surgery and produced nearly similar results of those of open procedure. (Ellman;1985)

Roye et al 1995 in a large study had shown that, impingement of the rotator cuff beneath the coraco-acromial arch is a common cause of chronic shoulder pain with the incidence, ranging from 18-20% among all shoulder problems. (Roye et al;1995)

Neer and Poppen in 1987, attributed 95% of all rotator cuff lesions to primary mechanical impingement. Neer 1987, also found that 10% of the population between 40-75 years develop full thickness tear due to impingement, one third of this tears occur in both shoulder of one individual. (Neer and Poppen; 1987)

Arthroscopic surgery is acknowledged as minimal invasive surgery, and new techniques for its use are constantly being developed. Grateful efforts have been done from the earlier arthroscopic surgeons whom make this era more popular between orthopedic surgeons.

Anatomy and Biomechanics