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Summary

In this thesis, we studied and solved analytically some problems of
electrohydrodynamic peristaltic flow with heat transfer in the presence
of ac electric field. The stream function, temperature distribution and
electric potential function are obtained up to second order in terms of
electrical Rayleigh number, temperature parameter, Reynolds number,
amplitude ratio, wave number and channel width. In our analysis,
we assumed that the velocity components, the pressure gradient, the
temperature and the electric potential could be expanded in a regular
perturbation series of the amplitude ratio.

The present thesis consists of three chapters in addition to two ap-
pendices and references section and arabic and english summaries.
These chapters are outlined as follows:

Chapter 1

Chapter 1 is an introduction. We give in it some information about
the following items:

• Fluid mechanics.

• Stress and Strain.

• Newtonian’s law of viscosity.

• On non-Newtonian fluids.

• Biomechanics.

• On perturbation theory.

• Heat transfer.
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Chapter 1

Introduction

1.1 Fluid mechanics

The matter is usually divided into two classes: solids and fluids.
Solid is the portion of matter which has a definite shape under given
thermodynamic conditions and in the absence of external forces. A
fluid is a substance which cannot resist a shear force or stress without
moving as a solid. Fluids are usually classified as liquids, gases and
plasmas. A liquid has intermolecular forces which hold together so that
it possesses volume but no definite shape. A liquid poured will fill the
container up to the volume of the liquid regardless of the container’s
shape. Liquids have slight compressibility and the density varies little
with temperature or pressure. For most purposes it is sufficient to re-
gard liquids as ”incompressible fluids”. A gas consists of molecules in
motion which collide with each other tending to disperse it so that a
gas has no set volume or shape. A gas will fill any container into which
it is placed and therefore known as a ”compressible fluid”. Plasmas
is considered to be a state of matter where the molecules are ionized
fully or partially and it does not also have a definite volume as gases
[[3] and [39]].

Fluid mechanics can be divided into fluid statics (the study of flu-
ids at rest), fluid kinematics (the study of fluids in motion) and fluid
dynamics (the study of the effect of forces on fluid motion). The fluid
mechanics is a branch of continuum mechanics (as shown in figure 1.1).
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1.2. STRESS AND STRAIN

Figure 1.1: Relationship between fluid mechanics and continuum me-
chanics.

1.2 Stress and Strain

Stress is a measure of the internal reaction between elementary par-
ticles of a material in resisting separation, compaction, or sliding that
tends to be induced by external forces. Total internal resisting forces
are resultants of continuously distributed normal and parallel forces.
These forces are of varying magnitude and direction and are acting on
elementary areas throughout the material. These forces may be dis-
tributed uniformly or non-uniformly. Stresses are identified as tensile,
compressive, or shearing, according to the straining action. Strain is a
measure of deformation such as:

1. Linear strain, the change of length per unit of linear dimensions.

2. Shear strain, the angular rotation in radians of an element un-
dergoing change of shape by shearing forces.

3. Volumetric strain, the change of volume per unit of volume.

The strains associated with stress are characteristic of the material.
Strains completely recoverable on removal of stress are called elastic
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1.3. NEWTONIAN’S LAW OF VISCOSITY

strains. Above a critical stress, both elastic and plastic strains ex-
ist. The part remaining after unloading represents plastic deformation
called inelastic strain. Inelastic strain reflects internal changes in the
crystalline structure of the metal. Shear strain is a strain that acts
parallel to the surface of a material. Normal strain acts perpendicular
to the surface of that it is acting on. There are two ways to interpret
shear strain: the average shear strain and the engineering shear strain
[89].

The following assumptions illustrate the relationship connecting the
stress and rate of strain components (Stokes assumptions) [3]:

1. The stress components are linear functions of the rate of strain
components (Newtonian fluid).

2. The relations between stress components and rate of strain com-
ponents are invariant to orientation of the coordinate axes, i.e.,
they remain unchanged by a rotation of the system of coordinates
or by interchange of axes (Isotropic fluid).

3. When all the velocity gradients are zero the stress components
must reduce to hydrostatic pressure.

1.3 Newtonian’s law of viscosity

Viscosity of a fluid is that characteristic of real fluids which exhibits
a certain resistance to alterations of form. Viscosity is also known as
internal friction. All known fluids possess the property of viscosity in
varying degrees. According to the Newtonian’s law of viscosity, the
shear stress on a fluid elemental layer is directly proportional to the
rate of strain. The constant of proportionality between them is known
as the coefficient of viscosity [89].
A simple equation to describe Newtonian fluid behavior is

τ = −µdv
dy
, (1.1)

where τ is the shear stress exerted by the fluid, µ is the coefficient of
viscosity (a constant of proportionality), dv/dy is the velocity gradient
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1.3. NEWTONIAN’S LAW OF VISCOSITY

perpendicular to the direction of shear (rate of strain).
When a fluid is sheared between a fixed plate and a moving plate, the
coefficient of viscosity is given by the Eq.

µ =
shearingstress

velocitygradient
=

force/area

velocity/height
. (1.2)

The table 1.1 lists the coefficient of viscosity of some materials.
Thus, as the viscosity of a fluid increases, it requires a larger force to
move the top plate at a given velocity. For a Newtonian fluid, the
viscosity depends only on temperature and pressure and does not de-
pend on the forces acting upon it. But for non-Newtonian fluids, the
viscosity can change by many orders of magnitude as the shear rate
(velocity/height) changes (see Fig. 1.2).

Figure 1.2: Flow between two parallel plates to illustrate viscosity.

The effect of viscosity on the motion of a fluid is determined by the ra-
tio of µ to the density ρ. This ratio is known as ”kinematic viscosity”.
If a fluid obeys this relation (the relation between stress and strain is
linear), it is termed a Newtonian fluid. If a fluid does not obey this
relation, it is termed a non-Newtonian fluid [7].

Many of the fluids encountered in everyday life (such as water,
air, gasoline, mineral oils, molten metals and honey) are adequately
described as being Newtonian fluids, but (food stuffs (fruit/vegetable
purees and concentrates, sauces, salad dressings, mayonnaise, jams
and marmalades, ice cream, soups, cake mixes and cake toppings, egg
white, bread mixes, snacks and ketchup), greases and lubricating oils,
molten lava and magmas, polymer melts and solutions, reinforced plas-
tics, rubber, custard, mine tailings and mineral suspensions, paint,
polishes, varnishes, paper pulp suspensions, multi-grade engine oils,
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1.4. ON NON NEWTONIAN FLUIDS

peat and lignite slurries, adhesives (wall paper paste and carpet adhe-
sive), ales (beer and liqueurs), animal waste slurries from cattle farms,
biological fluids (blood, synovial fluid and saliva), bitumen, cement
paste and slurries, chalk slurries, chocolates, coal slurries, cosmetics
and personal care products (nail polish, lotions and creams, lipsticks,
shampoos, shaving foams and creams, toothpaste, liquid soaps, etc),
dairy products and dairy waste streams (cheese, butter, yogurt, fresh
cream, whey, for instance), drilling mud, fire fighting foams, printing
colors, inks, pharmaceutical products (creams, foams, suspensions, for
instance)) are non-Newtonian fluids [4].

Table 1.1: Values of µ for common fluids at 150C and under atmo-
spheric pressure.

Substance µ (c.g.s.) Substance µ (c.g.s.)
Air 0.00018 Olive oil 0.1

Nitrogen 0.00017 Paraffin oil 0.2
Oxygen 0.0002 Honey 10
Hydrogen 0.00009 Glycerine 13
Helium 0.0002 Caster oil 15

Carbon dioxid 0.00014 Corn syrup 100
Water 0.0114 Bitumen 108

Ethyl alcohol 0.0012 Ethylene glycol 0.02
Mercury 0.0016 Molten glass 1012

1.4 On non Newtonian fluids

Non-Newtonian fluids can be classified as time independent fluids,
time dependent fluids and viscoelastic fluids. We summarize them
briefly as follows [[7] and [8]]:

1.4.1 Time independent fluids

The viscosity of time independent fluid is dependent on the shear
rate. It has the three following types (as shown in figure 1.3):
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1.4. ON NON NEWTONIAN FLUIDS

1. Shear thickening (dilatant) fluids
The apparent viscosity increases with increased shear rate. Some
examples of shear thickening fluids are sugar in water, clay slur-
ries and corn starch. Shear thickening fluids are also used in all
wheel drive systems utili-sing a viscous coupling unit for power
transmission.

2. Shear thinning (pseudo-plastic) fluids
The apparent viscosity decreases with increased shear rate. Some
examples of shear thinning are paper pulp in water, milk, gelatin,
polymer, paint (one wants the paint to flow readily off the brush
when it is being applied to the surface being painted, but not to
drip excessively), ice, blood, syrup and molasses.

3. Visco-plastic fluids
This type of non-Newtonian fluid behavior is characterized by the
existence of a threshold stress (called yield stress) which must be
exceeded for the fluid to deform (shear) or flow. Conversely, such
a substance will behave like an elastic solid or like a rigid body
when the externally applied stress is less than the yield stress.

Bingham plastics are a special class of Visco-plastic fluids which
have a linear shear stress or shear strain relationship which re-
quire a finite yield stress before they begin to flow (the plot of
shear stress against shear strain does not pass through the ori-
gin). Several examples are clay suspensions, drilling mud, tooth-
paste, mayonnaise, chocolate, and mustard. The surface of a
Bingham plastic can hold peaks when it is still while a Newto-
nian fluids have flat featureless surfaces.

4. Generalized Newtonian fluids
Stress is directly proportional to rate of strain. Some examples
are blood plasma and custard.
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1.4. ON NON NEWTONIAN FLUIDS

Figure 1.3: Flow curves of time independent fluids.

1.4.2 Time-dependent fluids

It has the two following types (as shown in figure 1.4):

1. Rheopectic
Apparent viscosity increases with duration of shear rate. Rheopec-
tic fluids are rare. Some examples are lubricants, whipped cream,
pastes and printers inks.

2. Thixotropic
Apparent viscosity decreases with duration of shear rate. Some
examples are clays, some drilling mud, many paints and synovial.

Figure 1.4: Flow curves of time dependent fluids.
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1.4. ON NON NEWTONIAN FLUIDS

1.4.3 Viscoelastic fluids

In this type of fluids both viscous and elastic properties have been
possessing. The simplest type of such a material is one which is Newto-
nian in viscosity and obeys Hooks law for the plastic part. Viscoelastic
fluids have not a simple relationships between shear stress and shear
rate, but it depend on the time derivatives of both of these quantities.
Some examples are polymer melts, bread dough and egg white.

1.4.4 The constitutive equations for some models
of non Newtonian fluids

• Time independent fluids[73]

1. Power-law (Ostwald-deWaele):
The constitutive equation for this model is

σ = Kγ̇n, (1.3)

where K and γ̇n are the consistency index for the non New-
tonian viscosity and shear rate respectively. The exponent
n delineates three cases:
n < 1 Pseudo-plastic fluid.
n = 1 Newtonian fluid (K=µ).
n > 1 Diclant fluid.

2. The Bingham plastic:
The constitutive equation for this model is

τ = τB + µPI γ̇, | τ |≥ τB

γ̇ = 0, | τ |< τB (1.4)

where τ is the extra stress tensor, τB is the yield stress and
µPI is the plastic viscosity.

3. Herschel-Bulkley:
The Herschel-Bulkley model describes blood behavior. Some
examples of fluids behaving in this manner include food
products, pharmaceutical products, slurries and semisolid
materials. The constitutive equation for this model is

σ = −PI + 2(µ+ η)D, (1.5)
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1.4. ON NON NEWTONIAN FLUIDS

where σ is the cauchy stress tensor, D=1
2
(L + LT ) is the

symmetric part of the velocity gradient, L = ∇V , T is the
transpose, -PI denotes the indeterminate part of the stress
due to the constraint of incompressible, µ and η are viscosi-
ties.

• Time dependent fluids[89]

1. Johnson-Segalman model:

σ = −PI + 2ηD + S, (1.6)

S + λ

(
dS

dt
+ S(W − αD) + (W − αD)TS

)
= 2µD, (1.7)

Where W=1
2
(L − LT ) is the skew symmetric parts of the

velocity gradient, D=1
2
(L+LT ) is the symmetric part of the

velocity gradient, L = ∇V , λ is the relaxation time, S is the
extra stress tensor and α is the slip parameter. It should
be noted that this model includes the viscous Navier-Stokes
fluid as a special case for λ = 0. Further, when α = 1, the
Johnson-Segalman model reduces to the Oldroyd-B fluid;
and when α = 1 and η = 0, the model reduces to the
Maxwell fluid.

2. Upper convection Maxwell model:

σ = −PI + S, (1.8)

S + λ
DS

Dt
= µA1, (1.9)

where A1 = L + LT is the first Rivlin-Ericksen tensor, L =
∇V and DS

Dt
is the upper convected time derivative of the

stress tensor, defined by

DS

Dt
=
∂S

∂t
+ (V.∇)S − LS − SLT . (1.10)

This model becomes Newtonian when λ = 0.

3. Oldroyd-B model:

σ = −PI + S, (1.11)
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