A COMPARATIVE STUDY BETWEEN THE DIAGNOSTIC VALUE OF ULTRASONOGRAPHY AND MAGNETIC RESONANCE IMAGING IN EVALUATION OF THE SHOULDER JOINT IN PATIENTS WITH RHEUMATOID ARTHRITIS

Thesis

Submitted in Partial Fulfillment of Master Degree In Rheumatology and Rehabilitation

Presented by

Nahla Naeem Mohamed Ali

M.B.; B. Ch.

Faculty of Medicine – Cairo University

Supervised by

Prof. Dr. Samia Mohamed Hassan FaddaProfessor of Rheumatology and Rehabilitation

Faculty of Medicine – Cairo University

Dr. Ihab I. Aboul-Eyoun Ali
Lecturer of Rheumatology and Rehabilitation
Faculty of Medicine – Cairo University

Dr. Hatem Mohamed Said El-Azizi
Lecturer of Radiodiagnosis
Faculty of Medicine – Cairo University

Faculty of Medicine Cairo University 2006

دراسة مقارنة بين الأهمية التشخيصية لكل من الموجات فوق الصوتية و اشعة الرنين المغناطيسي في تقييم إصابة مفصل الكتف في مرضى الروماتويد المفصلي

رسالة توطئة للحصول على درجة الماجستير في الروماتيزم و التأهيل

مقدمة من الطبيبة / نهلة نعيم محمد علي الطبيبة / نهلة نعيم محمد علي الطبيبة بكالوريوس الطب و الجراحة

تحت إشراف

حامعة القاهرة

الأستاذة الدكتورة/ سامية محمد حسن فضة أستاذ الروماتيزم و التأهيل كلية الطب ـ جامعة القاهرة

الدكتور/ إيهاب إبراهيم أبو العيون مدرس الروماتيزم و التأهيل كلية الطب - جامعة القاهرة

الدكتور/ حاتم محمد سعيد العزيزي مدرس الأشعة التشخيصية كلية الطب ـ جامعة القاهرة

> كلية الطب جامعة القاهرة 2006

CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
LIST OF ABBREVIATIONS	iii
LIST OF FIGURES	v
LIST OF TABLES	vii
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	5
Anatomy of the Shoulder Joint	5
Biomechanics of the Shoulder	23
Rheumatoid Arthritis (RA)	32
Clinical features of rheumatoid arthritis	32
Laboratory evaluation of rheumatoid arthritis	44
Radiological evaluation of rheumatoid arthritis	49
Radiological Evaluation of the Shoulder Joint in Patients with RA	70
Conventional radiography of the shoulder	70
Ultrasonography of the shoulder	71
Magnetic resonance imaging of the shoulder	89
PATIENTS AND METHODS	97
RESULTS	113
DISCUSSION	143
SUMMARY AND CONCLUSION	152
REFERENCES	155
ARABIC SUMMARY	

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and immense appreciation to **Prof Dr. Samia Mohamed Hassan Fadda,** professor of Rheumatology and Rehabilitation, Cairo University, for her keen interest in the progress of this work, her constructive criticism as well as her great patience in reading and revising the manuscripts. She was very generous in providing me with her knowledge and scientific materials.

Sincere thanks are due to **Dr. Ihab Aboul-Eyoun Ali**, Lecturer of Rheumatology and Rehabilitation, Cairo University, for his helpful suggestions and valuable advice.

Special thanks are due to **Dr. Hatem Mohamed Said El-Azizi**, Lecturer of Radiodiagnosis, Cairo University, for his precious suggestions and great assistance in the radiological studies.

I must thank the team of the laboratories of Clinical and Chemical Pathology Department, Cairo University Hospitals for carrying out laboratory investigations of patients under study.

LIST OF ABBREVIATIONS

ACJ	Acromio-clavicular joint
ACR	American College of Rheumatology
ARA	American Rheumatism Association
CBC	Complete blood count
CDS	Color duplex sonography
cm	Centimeter
CNS	Central nervous system
CR	Conventional radiography
CRP	C-reactive protein
CT	Computed tomography
D	Dimension
DAS	Disease activity score
DIP	Distal interphalangeal joint
DMARD	Disease modifying anti rheumatic drug
FSE	Fast spin-echo
EULAR	European league against rheumatism
ESR	Erythrocyte sedementation rate
Gd-DOTA	Gadolinium diethylene
Gd-DTPA	Gadolinium diethylene triamine penta acetic acid
GHJ	Glenohumeral joint
GHL	Glenohumeral ligaments
HAQ	Health Assessment Questionnaire
HB%	Hemoglobin percentage
HLADR	Human leucocytic antigen DR
IV	Intravenous
LGL _S	Large granular lymphocytes
LN	Lymph node
Max	Maximum

MA	Milli ampere
MCP	Metacarpophalangeal joints
MHAQ	Modified Health Assessment Questionnaire
MHz	Mega hertz
Min	Minimum
min	minutes
ml	Milliliter
mm	Millimeter
MR	Magnetic resonance
MRI	Magnetic resonance imaging
MS	Morning stiffness
MTP	Metatarsophalangeal joint
No.	Number
NSAID	Non steroidal anti-inflammatory drug
P	Probability
PCV	Packed cell volume
PIP	Proximal interphalangeal joint
PMN	Polymorphonuclear
PR	Plain radiography
RA	Rheumatoid arthritis
RF	Rheumatoid factor
ROM	Range of motion
SA-SD	Subacromial - subdeltoid
SD	Standard deviation
SC	Sterno-clavicular
Sec	Second
SF	Synovial fluid
SPSS	Statistical package for Social Sciences
RC tears	Rotator cuff tears
TB	Tuberculosis
US	Ultrasonography
VAS	Visual analogue scale
WBC	White blood cell count
WHO	World health Organization

LIST OF FIGURES

		Page
Fig. (1)	Left shoulder joint: anterior aspect	6
Fig. (2)	Coronal section through the left shoulder joint	8
Fig. (3)	Interior of the left shoulder joint	11
Fig. (4)	Posterior aspect of the left shoulder joint	17
Fig. (5)	Rotator cuff muscles (anterior view)	19
Fig. (6)	Rotator cuff muscles (posterior view)	19
Fig. (7)	Coronal section through the left shoulder joint viewed from the	21
	posterior aspect to show the subacromial bursa	<i>L</i> 1
Fig. (8)	Longitudinal section of the biceps tendon	78
Fig. (9)	The biceps tendon traverses the rotator cuff interval along the	78
	border of subscapularis	70
Fig. (10)	Transverse section of the biceps tendon as it lies in the bicipital	79
	groove	,,
Fig. (11)	Long axis of the supraspinatus tendon with the arm in	79
	hyperextension and internal rotation	
Fig. (12)	Infraspinatus in its long axis as its fibers converge	80
Fig. (13)	Normal supraspinatus	95
Fig. (14)	Normal infraspinatus	95
Fig. (15)	Normal teres minor	95
Fig. (16)	Normal subscapularis	95
Fig. (17)	Normal rotator cuff	96
Fig. (18)	Normal biceps tendon	96
Fig. (19)	Normal Glenoid labrum	96
Fig. (20)	Range of motion (R.O.M.) of the shoulder joint	
	a. Shoulder abduction to 90° b. Shoulder adduction	106
	c. Shoulder flexion to 90° d. Shoulder extension	100
	e. Shoulder internal rotation f. Shoulder external rotation	
Fig. (21)	Incidence of shoulder joint pathology as detected by CR	117
Fig. (22)	Incidence of shoulder joint pathology as detected by US	117
Fig. (23)	Incidence of shoulder joint pathology as detected by MRI	117
Fig. (24)	Comparison between CR, US & MRI in the detection of erosions	118
Fig. (25)	Comparison between CR, US & MRI in the detection of	118
	subchondral cysts	
Fig. (26)	Comparison between US & MRI in the detection of soft tissue	119

	changes of the shoulder joints in patients under study	
Fig. (27)	Comparison between US & MRI in the detection of various	
Fig. (21)	types of rheumatoid involvement of the shoulder joint under	119
	study	117
Fig. (28)	Ultrasonographic image of the left shoulder showing full	
11g. (20)	thickness tear involving the posterior surface of supraspinatus	133
	muscle	133
Fig. (29)	Ultrasonographic image of the right shoulder showing partial	
118 (2)	tear of supraspinatus muscle	133
Fig. (30)	Ultrasonographic image of the left shoulder showing full	
118 (00)	thickness tear of the infraspinatus muscle and fluid collection in	134
	the subdeltoid bursa	
Fig. (31)	Ultrasonographic image of the left shoulder showing fluid	101
	collection in the subdeltoid bursa	134
Fig. (32)	Ultrasonographic image of the left shoulder showing effusion	125
	around the biceps tendon (LS)	135
Fig. (33)	Ultrasonographic image of the left shoulder showing effusion	
	around the biceps tendon (TS) and thickening of the tendon	135
	(tendonitis)	
Fig. (34)	Ultrasonographic image of the left shoulder showing subcortical	136
	cyst of the humeral head	130
Fig. (35)	Ultrasonographic image of the left shoulder showing multiple	136
	erosions of the humeral head	130
Fig. (36)	Ultrasonographic image of the left shoulder showing acromio –	137
	clavicular joint effusion	
Fig. (37)	Transverse T_1 weighted image of the left shoulder demonstrating	
	minimal effusion of the Glenohumeral joint space and the gross	137
	erosive changes of the humeral head which appears filled by a	
Fig. (20)	tissue of intermediate signal intensity representing pannus tissue	
Fig. (38)	Coronal T ₁ weighted image of the right shoulder demonstrating	
	erosions and subcortical cysts of the humeral head, mild glenohumeral joint effusion, evident synovial thickening and a	138
	significant thinning of the supraspinatus tendon suggesting	130
	supraspinatus tendinitis	
Fig. (39)	Coronal STIR image of the right shoulder demonstrating	
8' (67)	subcortical cyst of the humeral head	138
Fig. (40)	Coronal T ₂ weighted image of the right shoulder demonstrating	
	Acromio – clavicular joint effusion, joint space narrowing and	139
	subchondral cysts of the distal end of the clavicle	
		·

LIST OF TABLES

Page

Table (A)	The list form of ACR criteria for diagnosing RA	97
Table (B)	Modified Health Assessment Questionnaire (MHAQ)	101
Table (1)	Demographic features of patients under study	113
Table (2)	Clinical features of patients under study	114
Table (3)	Clinical examination of the shoulder joints among patients under study	115
Table (4)	Laboratory features of patients under study	115
Table (5)	Comparison of conventional radiography with US & MRI in assessing erosions of the shoulder joints	121
Table (6)	Comparison of US with MRI in assessing erosions of the shoulder joints	122
Table (7)	Comparison of conventional radiography with US & MRI in assessing subchondral cysts of the shoulder joints	122
Table (8)	Comparison of US and MRI in assessing subchondral cysts of the shoulder joints	123
Table (9)	Comparison of US & MRI in assessing rotator cuff tears of the shoulder joints	124
Table (10)	Comparison between US & MRI in assessing synovitis of the GHJ & ACJ	124
Table (11)	Comparison between US & MRI in assessing tenosynovitis of the shoulder joints	125
Table (12)	Comparison between US & MRI in assessing bursitis of the shoulder joints	125
Table (13)	Relation between US detected erosions & various clinical parameters	126
Table (14)	Relation between US detected subchondral cysts & various clinical parameters	126
Table (15)	Relation between US detected tears of the rotator cuff & various clinical parameters	127
Table (16)	Relation between US detected joint synovitis & various clinical	127

	parameters	
Table (17)	Relation between US detected tenosynovitis & various clinical	128
	parameters	120
Table (18)	Relation between US detected bursitis & various clinical	128
1 abic (10)	parameters	120
Table (19)	Relation between MRI detected erosions & various clinical	129
Tuble (1)	parameters	12)
Table (20)	Relation between MRI detected subchondral cysts & various	129
10010 (20)	clinical parameters	
Table (21)	Relation between MRI detected tears of the rotator cuff &	130
, ,	various clinical parameters	
Table (22)	Relation between MRI detected joint synovitis & various	131
, ,	clinical parameters	
Table (23)	Relation between MRI detected tenosynovitis & various	131
	clinical parameters	
Table (24)	Relation between MRI detected bursitis & various clinical	131
	parameters Deletion between US detected annihing 8 managements of	
Table (25)	Relation between US detected erosions & movements of	132
	the affected shoulder joints Peletien between US detected subshandral eyets &	
Table (26)	Relation between US detected subchondral cysts & movements of the affected shoulder joints	132
	Relation between US detected soft tissue changes &	
Table (27)	movements of the affected shoulder joints	133
	Relation between MRI detected erosions & movements of	
Table (28)	the affected shoulder joints	133
	Relation between MRI detected subchondral cysts &	
Table (29)	movements of the affected shoulder joints	134
	Relation between MRI detected soft tissue changes &	
Table (30)	movements of the affected shoulder joints	134
	Relation between US detected pathology & serum rheumatoid	
Table (31)	factor	135
Table (32)	Relation between MRI detected pathology & serum rheumatoid	
	factor	135

Introduction

Rheumatoid arthritis (RA) is a chronic, systemic, disabling, disfiguring, autoimmune disease characterized by symmetric joint inflammation and destruction that often involves the small joints of the hands, wrists, knees and feet, with progressive destruction, deformity, and disability of the joints. Criteria for diagnosing rheumatoid arthritis include the presence of bone destruction and signs of inflammation in the joints of the hands and feet (Szkudlarek et al., 2004). Although the exact cause of RA remains unclear, the disease is well characterized by clinical manifestations associated with synovial inflammation of joints (Mosher, 2004).

Rheumatoid arthritis is characterized by painful swelling, deformity and deterioration of joints. RA occurs throughout the world and affects all races. It affects 0.5 - 1% of the worldwide population with age of onset between 40 and 50 years old (**Scheel** *et al.*, **2002**). Women are affected approximately 3 times more often than men. The prevalence increases with age and the sex differences diminishes in the older age group (**Sutton, 2003**).

RA can affect any diarthrodial joint, those most commonly involved initially are the small joints of the hands, wrists, knees and feet. At the onset there may be any pattern of joint disease, but usually it is bilateral, symmetrical and polyarticular. As the disease becomes established, the arthritis spreads to the elbows, shoulders, sternoclavicular joints, hips, ankles and subtalar joints (**Edward and Harris, 1995**).

The shoulder joint becomes involved later than the peripheral joints in RA. However, during the first two years of RA history, nearly 50% of the patients have shoulder symptoms (**Hamalainen**, 1995).

RA of the shoulder not only affects the synovium within the glenohumeral joint but also involves the distal third of the clavicle, various bursae and the rotator cuff, and multiple muscles around the neck and chest wall. Involvement of the rotator cuff in RA has been recognized as a principle cause of morbidity. One likely mechanism behind tears is that the rotator cuff insertion into the greater tuberosity is vulnerable to erosion by the proliferative synovitis that develops there (**Resnick and Niwayama, 1997**).

A thorough history and physical examination can usually determine the cause of a painful shoulder. In most cases, the diagnosis and cause of glenohumeral arthritis are fairly obvious. Imaging studies such as radiographs, computed tomography (CT), arthrography, ultrasonography (US) and magnetic resonance imaging (MRI) are used to confirm and further define the pathologic process (Green and Norris, 1994).

Radiography is the most widely utilized imaging modality for early RA where determination of radiographic progression remains to be a crucial part to evaluate therapy (Molenaar et al., 2004). Conventional radiography is however, insensitive for showing bone damage in early disease and is totally unsuitable for assessing synovial inflammation. The recognition of these limitations has led to intense interest in the multiplanar imaging capabilities of magnetic resonance imaging (MRI) in RA and to an increasing use of ultrasound (US) for assessing synovitis and bone damage (McGonagle et al., 2001).

Diagnostic US documents synovitis, determines the presence or absence of an effusion, differentiates bursitis, tendonitis, tendon rupture, documents intra- and peri-articular abnormalities, eg: erosions (Alarcon et al., 2002). US has an important role in assessing soft tissue involvement in RA since it is widely available and clearly differentiates

inflammatory and non-inflammatory changes (**Iagnocco** *et al.*, **2003**). Although US may be less sensitive than MRI, it is likely to be more sensitive and specific than clinical examination (**Bruyn** *et al.*, **2004**).

MRI is an excellent technique for imaging the anatomy of the rheumatoid joint. It allows visualization of bone and soft tissue in three dimensions as it employs multiplanar tomography (**Anderson** *et al.*, **1998**). MRI is capable of revealing synovitis and tendonitis in early RA as well as bone edema. These features are visible before radiographic joint damage occurs (**Mc Queen** *et al.*, **2003**).

Ultrasound and magnetic resonance imaging have already been compared with conventional radiography for the assessment of the peripheral joints of RA patients in several studies, and both have been found to have a higher sensitivity than radiography in detecting erosions (Wakefield *et al.*, 2000). Little attention has so far been paid to the proximal joints of the arms, although the shoulder joints tend to show abnormal changes in a high percentage of patients when RA first becomes manifest (Petersson, 1986).

Hermann and colleagues compared 3 imaging modalities, conventional radiography, US and MRI, in rheumatoid arthritis patients with shoulder pain (Hermann et al., 2003). However, they did not compare clinical examination for soft tissue changes with US and MRI findings. In addition, Hermann and colleagues limited their examination to the glenohumeral joint. However, it is well known that shoulder pain may originate from the acromioclavicular joint, which appears to be involved more often than the glenohumeral joint in patients with RA (Lehtinen et al., 2000).