Continuous versus interrupted sutures for repair of episiotomy or second-degree perineal tears: A randomised controlled trial

Ehesis

Submitted for the Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By

Mamdouh Abdel Gawwad Mohamed Rashwan

M.B..B.CH.

South vally University (2001)
Residant of Obstetrics and Gynecology
Sohag General Hospital

Under Supervision of

Prof. Hassan Awwad Byoumy

Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Dr. Amgad Alsaid Abou-Gamrah

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine-Ain Shams University

Dr. Wessam Magdy Abuelghar

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain shams University

مقارنة بين إصلاح شق الفوهة الفرجية بطريقة الخياطة المستمرة وطريقة الخياطة المتقطعة تجربة عشوائية

رسالة

توطئم للحصول على درجم الماجستير في التوليد وأمراض النساء

مقرمة من الطبيب / ممدوح عبد الجواد محمد رشوان بكالوريوس الطب والجراحة جامعة جنوب الوادي (٢٠٠١)

خت لٍشراف الأستاذ الدكتور/حسـن عــواد بيومــي

أستاذ التوليد وأمراض النساء

كلية الطب- جامعة عين شمس

الدكتور/ أمجد السعيد أبو جمرة

أستاذ مساعد التوليد وأمراض النساء

كلية الطب- جامعة عين شمس

الدكتور/ وسام مجدي أبوالغار

أستاذ مساعد التوليد وأمراض النساء

كلية الطب- جامعة عين شمس

كلية الطبب جامعة عين شمس ٢٠١٤

سورة البقرة الآية: ٣٢

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	III
List of Figures	VI
• Abstract	
• Protocol	
• Introduction	1
Aim of the Work	8
• Review of literature	
- Chapter One: Episiotomy	9
- Chapter Two: Methods of closures	37
- Chapter Three: Types of Sutures Material	43
Patients and Methods	55
• Results	65
• Discussion	92
• Summary	100
Conclusion & Recommendations	106
• References	107
• Appendix (1):Data recording of the participants	\$
• Appendix (2):Written consent	
Arabic Summary	

List of Abbreviations

1st stage : First stage

2nd stage : Second stage

BMI : Body mass index

CBC : Complete blood count

CC : Chromic catgut

CKT : Continuous Knotless Suturing Technique

CM : Centimeter

Dr. : Doctor

EAS : external anal sphincter

FHR : Fetal heart rate

FI : Fecal incontinence

Fig : Figure

HS : Highly significant

IAS : Internal anal sphincter

IT : Interrupted Suture Technique

MLE : mediolateral episiotomy

: National Institute for Health and Care

NICE Excellence

NS

: Non-significant

OASIS : Obstetric anal sphincter injuries

PDS : Polydioxanone

PG: primigravida

🕏 List of Abbreviations 🗷

RCOG : Royal College of Obstetricians and

Gynecologists

S : Significant

SD : Standard Deviation

UI : Urinary incontinence

UK : United Kingdom

US : United States

USA : United States Of America

VAS: Visual analogue scales

X : Mean

List of Tables

Table Number	Table Name	Page
Table (1)	Shows the different degrees of	21
		21
	episiotomy.	
Table(2)	Comparison between continuous and	65
	interrupted suture technique as regard	
	number of cases.	
Table (3)	Comparison between continuous and	66
	interrupted suture technique as regard	
	age of the patients.	
Table (4)	Comparison between continuous and	67
	interrupted suture technique as regard	
	age groups.	
Table (5)	Comparison between continuous and	69
	interrupted suture technique as regard	
	height, weight and BMI.	
Table (6)	Comparison between continuous and	71
	interrupted suture technique as regard	
	birth weight	
Table (7)	Comparison between continuous and	72
	interrupted suture technique as regard	
	time needed for episiotomy.	
Table (8)	Comparison between continuous and	73
	interrupted suture technique as regard	
	bleeding.	

🕏 List of Tables 🗷

Table	Table Name	Page
Number		
Table (9)	Comparison between continuous and	74
	interrupted suture technique as regard	
	suture material.	
Table (10)	Comparison between continuous and	75
	interrupted suture technique as regard	
	need for analgesia.	
Table (11)	Comparison between continuous and	76
	interrupted suture technique as regard	
	pain during movement.	
Table (12)	Comparison between continuous and	77
	interrupted suture technique as regard	
	pain during setting.	
Table (13)	Shows Comparison between	78
	continuous and interrupted suture	
	technique as regard pain during	
	defecation.	
Table (14)	Comparison between continuous and	80
	interrupted suture technique as regard	
	pain during repose.	
Table(15)	Comparison between continuous and	82
	interrupted suture technique as regard	
	dyspareunia.	
Table (16)	Comparison between continuous and	83
	interrupted suture technique as regard	
	wound resuturing.	

🕏 List of Tables 🗷

Table Number	Table Name	Page
Table (17)	Comparison between continuous and	84
	interrupted suture technique as regard	
	wound infection.	
Table (18)	Comparison between continuous and	86
	interrupted suture technique as regard	
	VAS at 48 hours.	
Table (19)	Comparison between continuous and	87
	interrupted suture technique as regard	
	VAS at 10 days.	
Table (20)	Comparison between continuous and	88
	interrupted suture technique as regard	
	VAS at 3 months.	
Table (21)	Comparison between continuous and	89
	interrupted suture technique as regard	
	Correlation between VAS and maternal	
	age, BMI and baby birth weight.	
Table (22)	Shows Univariate logistic regression	90
	analysis for risk factors for post-labor	
	pain.	
Table (23)	Shows Multivariate logistic regression	91
	analysis for risk factors for post-labor	
	pain.	

List of Figures

Figure Number	Figure Name	Page
Figure (1)	Shows the visual analog scale.	35
Figure (2)	Shows continuous and interrupted suture	65
	technique as regard type of repair.	
Figure (3)	Shows continuous and interrupted suture	66
	technique as regard age of the patients.	
Figure (4)	Shows continuous and interrupted suture	68
	technique as regard age groups.	
Figure (5)	Shows continuous and interrupted suture	70
	technique as regard height, weight and	
	BMI.	
Figure (6)	Shows continuous and interrupted suture	71
	technique as regard birth weight.	
Figure (7)	Shows continuous and interrupted suture	72
	technique as regard time needed for	
	episiotomy.	
Figure (8)	Shows continuous and interrupted suture	73
	technique as regard bleeding.	
Figure (9)	Shows continuous and interrupted suture	74
	technique as regard suture material	
	needed for the repair.	
Figure (10)	Shows continuous and interrupted suture	75
	technique as regard need for analgesia.	

🕏 List of Figures 🗷

Figure Number	Figure Name	Page
Figure (11)	Shows continuous and interrupted suture	76
	technique as regard pain during	
	movement.	
Figure (12)	Shows continuous and interrupted suture	77
	technique as regard pain during setting.	
Figure (13)	Shows continuous and interrupted suture	79
	technique as regard during defecation.	
Figure (14)	Shows continuous and interrupted suture	81
	technique as regard pain during repose.	
Figure (15)	Shows continuous and interrupted suture	82
	technique as regard dyspareunia.	
Figure (16)	Shows continuous and interrupted suture	83
	technique as regard wound resuturing.	
Figure (17)	Shows continuous and interrupted suture	85
	technique as regard wound infection.	
Figure (18)	Shows continuous and interrupted suture	86
	technique as regard VAS at 48 hours.	
Figure (19)	Shows continuous and interrupted suture	87
	technique as regard VAS at 10 days.	
Figure (20)	Shows continuous and interrupted suture	88
	technique as regard VAS at 3 months.	

Continuous Versus Interrupted Sutures Technique For Repair Of Episiotomy: A randomized Trial

 $\mathcal{B}_{\mathcal{I}}$

Mamdouh Abdel Gawwad Mohamed M.B.,B.CH.(2001)

Aim of the work:

To compare the continuous versus interrupted sutures as regard the time taken in the repair, perineal pain (at 48 h, 10 days and three months) postpartum, the need for analgesia up to 48 hours after delivery, amount of blood loss during the repair measured by counting surgical gauze used, drapes around the patient, and amount of blood in the suction container if present, length of threads used by centimeters, wound dehiscence and infection and the need for resuturing.

Methods:

one hundred seventy pregnant women underwent episiotomy in the second stage of labor in **Ain Shams University Maternity Hospital** were chosen to participate in the study after obtaining a written consent and divided into 2 groups, group: A was repaired by interrupted suturing technique and include **85** pregnant women while the group: B was repaired by continuous suture technique and include another 85 pregnant women.

Results:

The results showed that a statistically significant difference could be detected between continuous and interrupted groups as regard the time taken in the repair, pain at 48 and ten days postpartum, need for analgesia, length of threads used by cm, amount of blood loss during the repair that it was higher in interrupted group compared to continuous group.

Conclusion:

The use of a continuous knotless technique for perineal repair is associated with less time of wound suturing, length of threads used by cm, perineal pain at 48 hours and 10 days postpartum, need for analgesia and lower VAS scores than techniques with interrupted sutures.

- The appraisal to Allah for finishing this work and thanks to Allah for giving me the strength to work.
- Special thanks to **Professor. Hassan Awwad Byoumy,** for his kindness, his support to me and his giving to me the chance to work under his supervision.
- Thanks to **Professor. Amgad Alsaid Abou-Gamrah**, for giving me his valuable time and effort, and for his honest and constant guidance to complete this work.
- Sincere appreciation to Assistant **Professor Wessam**Magdy Abuelghar, for his valuable instructions, cooperation and advice.

Mamdouh Abdel Gawwad Mohamed

s Ja

Family for their warm affection, patience, encouragement, and for always being there when I needed them

My Wife who always support me,

Introduction

Perineal trauma affects a vast amount of women both nationally and internationally with more than 350,000 women in the UK per year needing stitches to facilitate healing of a spontaneous tear or episiotomy (*Lynn et al.*, 2012).

Approximately 70% of women who have a vaginal birth will experience some degree of damage to the perineum, due to a tear or cut (episiotomy), and will need stitches. This damage may result in perineal pain during the two weeks after the birth, and some women experience long-term pain and discomfort during sexual intercourse (*Kettle et al.*, 2010).

Episiotomy is a surgical incision through the perineal tissue that is designed to enlarge the vulval outlet during the second stage of delivery and to minimize the risk of severe spontaneous, maternal trauma and to expedite the birth when there is evidence of fetal compromise (*Kettle et al.*, 2010).

And to facilitate birth or to prevent perineal tears. Although it is one of the most commonly performed surgical procedures during delivery, there is extensive disagreement about the necessity and benefits of this procedure (*Rajiv et al.*, 2010).