Evaluation of miR-96 and miR-155 expression in breast cancer

Thesis

Submitted For Partial Fulfillment for the Requirement of M.D. Degree in Basic Sciences (Medical Biochemistry)

By

Shaimaa Mohamed Mohamed

Assistant Lecturer of biochemistry (*M.B.*, *B. Ch. & M. Sc. Medical Biochemistry*) Faculty of Medicine –Ain Shams University

Supervised By

Prof. Dr. Azza Hassan AbouGhalia

Prof. of Medical Biochemistry and Molecular Biology Faculty of Medicine- Ain Shams University

Prof. Dr. Sanaa Eissa Mohamed

Prof. of Medical Biochemistry and Molecular Biology Faculty of Medicine- Ain Shams University

Ass. Prof. Dr. Hanan Hussein Shehata

Ass. Prof. of Medical Biochemistry and Molecular Biology Faculty of Medicine- Ain Shams University

Ass. Prof. Dr. Mohamed Elsayed El shinawi

Ass. Prof. of General Surgery Faculty of Medicine- Ain Shams University

Medical Biochemistry Department Ain Shams University- Faculty of Medicine 2015

First of all, my utmost gratitude is to **Allah**, The creator of all, for helping me to complete this work, thanks **GOD**.

My greatest appreciation For **Prof. Dr. Azza Hassan AbouGhalia**, Professor of medical Biochemistry and molecular biology, Faculty of Medicine; Ain shams University, words are not enough to thank her for her meticulous supervision, continuous guidance, and constructive criticism. I appreciate her patience and objectivity in tolerating the revision of this study. There is no aspect of this work in which she was not involved by her own rule "nothing accepted except excellence".

My deepest gratitude for **Prof. Dr. Sanaa Eissa**Mohamed, Professor of medical Biochemistry and Molecular Biology,
Faculty of Medicine, Ain Shams University for her kind supervision, her
effort, generous ideas and her kind help for providing the place for doing
the practical work, words cannot express my thanks to her.

I am too grateful to Ass. Prof. Dr.Hanan Hussein Shehata, Assistant Professor of medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University for her kind help in the practical work, and her effort on doing statistical analysis of the results of the study, words cannot express my thanks to her.

I am too grateful to Ass. Prof. Dr. Mohamed El sayed Elshinawi Assistant Professor of General Surgery, Faculty of Medicine, Ain Shams University for his generous help and unlimited support in collection of samples.

> To My Dear Parents

For their pray to Allah for me

> To My Husband and My Son

For their endurance and loving

> To My Sisters and My Brother

For their love and support

Approval Sheet

TITEL OF THESIS: Evaluation of miR-96 and miR-155

expression in breast cancer

NAME Mohamed		STUDENT:	Shaimaa	Mohamed	Mohamed
DEGREE	E: Ma	ster Degree in B	asic Science	e (Medical Bi	ochemistry)
THIS TH	ESIS	S HAS BEEN	SUPERVIS	SED BY:	
Prof. Dr. A	Azza	Hassan AbouC	Shalia		
Prof. Dr. S	Sana	a Eissa Mohan	ned		
Ass .Prof.	Dr E	Ianan Hussein	Shehata		
Ass .Prof.	Dr. I	Mohamed Elsa	yed El Shin	awy	
EXAMIN	ATI	ON COMME	ITTTEE:		
Prof. Dr.					
Prof. Dr					
Prof. Dr					

DECLARATION

This thesis has not been submitted for a degree at this
University or any other University

Contents

Subjects	Page
List of abbreviations	I
List of tables	V
List of figures	VII
Introduction and aim of work	1
• Review of literature	
I-Breast Cancer	5
A-Epidemiology	6
B-Risk factors	7
C-Classifications of breast cancer	18
C.1-Histopathological classification	18
C.2-Molecular classification	24
D-Staging	27
E-Grading	32
F-Prognostic markers	33
F.1-Estrogen and progesterone receptor status	33
F.2-HER2/neu status	34
F.3-DNA ploidy and cell proliferation rate	35
F.4-Gene expression profiling	35
G- Diagnosis:	37
G.1-Signs and symptoms	37
G.2-Breast self examination	38
G.3-Clinical exam	38
G.4-Imaging techniques	39
G.5-Biopsy	41
G.6-Biomarkers	41

II- microRNAs (miRNAs)	45
A-History	46
B-Nomenclature	47
C-Biogenesis	47
D-Mechanism of miRNA regulation	52
E-Role of miRNAs in health and disease	56
F-Role of miRNA in breast cancer	62
F.1-miRNA-96	63
F.2-miRNA-155	65
G-Experimental technique for miRNA analysis	68
Patients and methods	71
Results	91
I-Clinicopathological criteria	91
II- miRNAs	99
• Discussion	119
• Summary, Conclusion and Recommendations	131
• References	134
• Arabic summary, Conclusion	and
Recommendations	

List of abbreviations

AGO : Argonate protein

AJCC: American Joint Committee of cancer.

BIC : B cell integration cluster

Bp : Base pair

BMI : Body mass index

BRCA (1, : Breast cancer Susceptibility gene (1, 2)

2)

CA 15-3 : Carcinoma antigen 15-3 : Carcinoma antigen 27.29

CD24 : Cluster of of differentiation number 24CD44 : Cluster of of differentiation number 44

cDNA : Complementary DNA

CEA : Carcinoma embryonic antigen

Cis : Carcinoma in situ CT : Cycle threshold

Daf-12 : Nuclear hormone receptor in C. elegans

DCIS : Ductal carcinoma in situDNA : Deoxy ribonucleic acid

dNTPs : Deoxy nucleoside triphosphateDrosha : Double stranded RNA specific

endoribonuclease

eIF6 : Eukaryotic translation initiation factor6
eIF4E : Eukaryotic translation initiation factor 4E

eIF4G : Eukaryotic translation initiation factor

4 gamma

ER : Estrogen receptor

Est-1 : E26 transformation specific-1

F : Analysis of variance (ANOVA)

FOXO : Forkhead home box o protein

FOXO1 : Forkhead home box o protein 1

FOXO3 : Forkhead home box o protein 3

GDP : Guanosine diphosphate

GTP : Guanosine -5'-triphosphate

HDAC : Histone deacetylase complex

HER2/neu: Human epidermal growth factor receptor2

Hs : Homosapiens

IDC : Invasive ductal carcinoma

ILC : Invasive lobular carcinoma

LCIS : Lobular carcinoma in situ

Lin : Heterochronic genes in c.elegans

(M) : Metastasis

m7G : 7-methyl-guanosine

MHT : Menopausal hormone therapy

mir : pre- miRNA

miR :Mature miRNA

miR* : Passenger miRNA

MRI : Magnetic Resonance Imaging

mRNA : Messenger ribonucleic acid

(N) : Lymph node

NPV : Negative predictive value

OCP : Oral contraceptive pills

PCR : Polymerase chain reaction

PPV : Positive predictive value

PR : Progesterone receptor

pre-miRNA: Precursor miRNA

pri-miRNA: Primary miRNA transcript

RAN-GAP: RAN-GTPase activating protein

RAN-GTP: RAS-related nuclear protein with bound

GTP

RISC : RNA induced silencing complex

RECK: Reversion-inducing cysteine-rich protein

with Kazal motifs

Rn : Normalized reported signal

RNA : Ribonucleic acid
RNAse III : Ribonuclease III

ROC : Receiver-operating characteristic

rpm: Revolution per minute

RT-PCR : Reverse transcriptase polymerase chain

reaction

SD: Standard deviation
Socs1: Cytokine signaling 1

SPSS : Statistical Package for the Social

Sciences software

t : Independent- Samples T test

(**T**) : Tumour Grade

Taq DNA: Thermus aquatica deoxy ribonucleic

acid

T_m : Melting temperature

TN : True negative

TP : True positive

TP53INP1: Tumor protein 53-induced nuclear

protein 1

TNM: Tumor-nodes-metastases

U : Mann whitney U test

USA : United States of America

UTR : Untranslated region

UV : Ultraviolet

WHO : World health organization

: Segment 21 of the long arm of chromosome

 Δ : Delta

List of Tables

Table	Title	Pogo
no.	Title	Page
1	Breast cancer T, N and M categories.	28
2	Breast cancer stage grouping.	30
3	Five year survival rates by stage for breast	31
	cancer.	
4	Components of RT-PCR master mix.	79
5	Real time PCR master mix.	85
6	The age in both groups.	92
7	Clinicopathological criteria in the breast	94
	cancer and control groups.	
8	Histopathological criteria in patients with	95
	breast cancer.	
9	Estrogen receptor (ER), progesterone	96
	receptor (PR) and human epidermal growth	
	factor receptor 2 (HER2/neu) status in	
	breast cancer patients.	
10	Estrogen receptor (ER), progesterone	97
	receptor (PR), and human epidermal	
	growth factor receptor 2 (HER2/neu) status	
	in relation to the stage of tumor in breast	
	cancer patients.	
11	Estrogen receptor (ER), progesterone	98
	receptor (PR), and human epidermal	
	growth factor receptor 2 (HER2/neu) status	

Table no.	Title	Page
	in relation to the grade of tumor in breast	
	cancer patients.	
12	The relative expression level of miR-96 in	101
	patients with breast cancer versus the	
	control group.	
13	The positivity rate of miR-96 among both	104
	groups of the study.	
14	miR-96 expression in relation to different	106
	clinicopathological criteria among breast	
	cancer patients.	
15	The relative expression level of miR-155 in	109
	patients with breast cancer versus the	
	control group.	
16	The positivity rate of miR-155 among both	112
	groups of the study.	
17	miR-155 expression in relation to different	114
	clinicopathological criteria among breast	
	cancer patients.	
18	Performance characteristics of miR-96, and	116
	miR-155.	
19	Correlation between mir-96, and miR-155	117
	in thirty-eight breast cancer patients.	

List of Figures

Figure	T:41a	Dogo
no.	Title	Page
1	Biogenesis of miRNA.	48
2	Structure of pri-miRNA.	49
3	Seed sequence in mature miRNA.	53
4	Mechanisms of miRNA Gene	53
	Regulation.	İ
5	Cap-40S initiation inhibition.	55
6	Role of miRNAs in multiple biological	58
	functions.	ľ
7	miRNAs as oncogenes, or tumor	60
	suppressor genes.	İ
8	location of miR-96 on chromosome 7.	63
9	miR-155 host gene showing 3 exons.	65
10	Reverse transcription of miRNA into	77
	cDNA.	İ
11	miRNA detection by SYBR green PCR	80
	kit.	ľ
12	Melting curve analysis.	85
13	CT is the intersection between an	87
	amplification curve and a threshold	ľ
	line.	İ
14	The mean ranks of the relative	102
	expression levels of miR-96 in both	İ