

Fibroblast Growth Factor-23(FGF-23) And Cognitive Performance In Hemodialysis Patients

Thesis

Submitted for partial fulfillment of Master Degree in Internal medicine

By

Safaa Saber Abd elhalim Youssef

(M.B., B. Ch)

Supervisors

Asst. Prof. Dr. Hayam Mohamed Aref

Associate professor of Internal Medicine and Nephrology

Faculty of Medicine, Ain Shams university

Dr. Hussein Sayed Hussein

Lecturer of Internal Medicine and Nephrology

Faculty Of Medicine ,Ain Shams University

Dr. Mohamed Mahmoud Fouad

Lecturer of Nurology

Faculty of Medicine, Ain Shams University

Faculty of medicine - Ain shams university

2016

List of Content

Introduction	
Aim of work	3
Review of literature	4
 Neuropsychatric disorders in hemodialysis patients 	4
 Cognitive function in hemodialysis patient 	10
 Assessment of cognitive function 	16
Fibroblast Growth Factor 23	41
Patients and Methods	57
Results	63
Discussion	88
Summary, Conclusion & Recommendations	99
References	104
Arabic summary	1

List of Tables

No	Title	
1	Descriptive and demographic analysis of parametric data in all patients	64
2	Descriptive analysis of non parametric data in all patients	64
3	Demographic analysis of etiology of renal failure in all patients	65
4	Descriptive analysis of cognitive function tests in all patients	66
5	Demographic analysis of past history of hypertension in patients among FGF-23 quartiles	68
6	Demographic analysis of history of smoking in all patients among 4 FGF-23 quartiles	69
7	Demographic analysis of IQ in all patients among FGF-23quartiles	70
8	Demographic analysis of Mini Mental Stat Examination test of patients among FGF-23 quartiles	71
9	Demographic analysis of verbal paired associate I of weschler scale III among FGF-23 quartiles	72
10	Demographic analysis of verbal paired associate II of	73

	WEschler scale III among FGF-23quartile	
11	Demographic analysis of Benton visual retention test –correct score among FGF-23quartiles	74
12	Demographic analysis of Benton visual retention test- error score among FGF-23 quartile	75
13	Demographic analysis of Trail making test –A in all patients among FGF-23 quartiles	76
14	Descriptive & comparative analysis of 4 FGF-23 quartile of studied parameter in all hemodialysis patients	77
15	Descriptive and comparative analysis of 4 FGF-23 quartiles of studied cognitive function in all patients	78
16	Comparative statistics among four FGF-23 quartiles	79
17	Descriptive statistics of studied parameter as regard cognitive function	80
18	Correlation analysis between FGF-23 values and different studied parameters in all case	81
19	Multi_ Regression analysis of all studied parameter using FGF-23Q as dependant variable	82
20	Multi_ Regression analysis of all studied parameter using FGF-23Q as dependant variable model 2	83

21	Correlation analysis between age of patients and cognitive function test	84
22	Correlation analysis between serum hemoglobin and cognitive function tests in all patients	85
23	Correlation analysis between KT/V and cognitive function tests in all patients	86
24	Correlation analysis between cognitive function tests and others studied parameters in all patients	87

list of figures

No	Title	Page
1	Benton visual retention test	33
2	Trail making test	34
3	Representative levels of fgf23 in health, various states of ckd orange bars, and in primary hypophosphatemic disorders blue bars	46
4	Fgf23 is an independent risk factor for mortality in ckd stages 2–4	49
5	Distribution of sex in the studied population	63

List Of Abbreviations

3MS	An extension of the mmse with four additional subtests and a maximum score of 100 points instead of 30 points
BDI	Beck depression inventory
BVRT	Benton visual Retention Test
BVRT-ECS	Benton visual Retention Test expected correct score
BVRT-OCS	Benton visual Retention Test Obtained correct score
BVRT-OES	Benton visual Retention Test obtained error score
CSF	Cerebro spinal fluid
CKD	Chronic kidney disease
CRIC	Chronic renal insufficiency cohort
CBT	Cognitive behavioral therapy
ESRD	End stage renal disease
ES-D	Epidemiologic studies depression scale
eGFR	Estimated glomerular filtration rate
FGF-23	Fibroblast growth factor -23
FGFR	Fibroblast growth factor receptor
HOST	Homocysteine study
LVH	Left ventricular hypertrophy

LVMI	Left ventricular mass index
MMSE	Mini Mental State Examination
PTH	Parathyroid hormone
PCA	Principal component analysis
TICSm	Telephone interview for cognitive status modified
TMT-A	Trail making test part A
VPA	Verbal paired associate
WMS	Wechsler Memory scale
WAIS	Wechsler adult intelligence scale

Acknowledgment

This work would never be crowned by success without the blessing of **Allah.** To him my loyalty will remain forever beyond any compromise.

Asst. Prof. Dr. Hayam Mohamed Aref, Associate Professor of internal medicine and nephrology, Faculty of Medicine, Ain shams University. Special grateful thanks to here for her brilliant idea, indispensable advice, valuable instructions, close supervision of details of work and friendly encouragement.

I wish to express my deep thanks and gratitude to **Dr. Hussein Sayed Hussein**, Lecturer of Internal Medicine and nephrology, Faculty of Medicine, Ain shams University for his kind help and continuous encouragement.

My special grateful thanks to **Dr. Mohamed Mahmoud Fouad**, Lecturer of neurology Faculty of Medicine, Ain shams
University for his kind help and continuous encouragement .They
were after every step in this work by their continuous
encouragement and enthusiastic guidance.

I wish to express my deep thanks and gratitude to Asst. Prof. Dr. Wessom El-Sayed Saad, Assisstant professor of Clinical and chemical pathology, Faculty of Medicine, Ain shams University, for her kind cooperation and support during my research work.

In addition I would like to express my deepest gratitude to all staff members &my colleagues of Internal Medicine department for their help to perform this work.

Lastly I would like to thank **my patients** who gave me the chance to do this work.

Safaa Saber Abd el haliem

2016

ABSTRACT

Back ground Although cognitive impairment is common in hemodialysis patients, the etiology of and risk factors for its development remain unclear. Fibroblast growth factor 23 (FGF-23) levels are elevated in hemodialysis patients and are associated with increased mortality and left ventricular hypertrophy. Material and methods We measured FGF-23 in 85 prevalent hemodialysis patients in whom comprehensive neurocognitive testing was also performed. The cross-sectional association between patient characteristics and FGF-23 levels was assessed. Principal factor analysis was used to derive two factors from cognitive test scores, representing memory and executive function. Multivariable linear regression adjusting for age, sex, education status, and other relevant covariates was used to explore the relationship between FGF-23 and each factor. Results Mean age was 38.5±10 years, 45.9% were women. The median FGF-23 level was 39 ng/L. Younger age, low hemoglobin were independently associated with higher FGF-23 levels. High FGF-23 level were associated with high KT/V(P=0.017). There were no association between cognitive impairment and FGF-23 levels, however by multi-regression analysis higher FGF-23 were associated with low parathyroid hormone, high hemoglobin and low score of memory function test (p=0.01). **conclusion** there were no association between FGF-23and cognitive impairment in hemodialysis patients.

Key word

Hemodialysis, cognitive impairment, FGF-23

Introduction

Introduction

Cognitive impairment is common in individuals with chronic kidney disease (CKD), particularly among those treated with dialysis. Cognitive impairment adversely impacts multiple areas of patient care, including patient compliance with treatment plans, quality of life, and mortality; therefore, understanding its pathogenesis is essential to improving outcomes for patients with ESRD (*Murray et al.*, 2006).

Hemodialysis and CKD populations share most of these same risk factors for cognitive impairment to the general population. However, in contrast the roles of aging and non-vascular factors are overshadowed by stroke and the high prevalence of cardiovascular risk factors (*Nissenson et al.*, 1991).

In addition, the contributions of factors secondary to kidney failure such as uremia, anemia, metabolic disturbances and hemodynamic instability during dialysis are still to be defined (weiner et al., 2011).

Fibroblast growth factor 23 (FGF-23) is a phosphaturic hormone, whose levels increase as kidney function declines (*Larsson et al.*, 2003).

Several cross-sectional studies in CKD, ESRD, and non-CKD populations demonstrated that elevated FGF23 levels are independently associated with greater left ventricular mass index and greater prevalence of LVH (*Kirkpantur et al.*, 2011).

Elevated FGF23 levels were also associated with reduced ejection fraction and prevalent atrial fibrillation but not coronary artery disease (*Gutierrez et al.*, 2008).

Through a Klotho-independent pathway involving stimulation of fibroblast growth factor receptors, FGF-23 may cause direct endorgan toxicity, particularly within cardiac muscle (*FAUL C et al.*, 2011).

Although primarily expressed in the bone, FGF-23 is also found in high concentrations within the brain .As both Klotho and FGF receptors are also found within the brain (*Yamashita et al.*, 2000).

There are few studies investigating factors associated with FGF-23 levels in hemodialysis patients and that evaluate the relationship between FGF-23 and cognitive function (*Drew.*, *et al.*,2014).

Aim of the work

To determine the level of FGF-23 in hemodialysis patients and its possible relation with cognitive impairment in such patients.