

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Mechanical Power Engineering

Studying the Swirling Flames Using Elliptical Cross-Sections

A Thesis Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering
(Mechanical Power Engineering)

By

Mohamed Mohy El Din Mohamed Morsy

Bachelor of Science in Mechanical Engineering
(Mechanical Power Engineering)

Faculty of Engineering, Ain Shams University, 2011 Supervised By

Prof. Mahmoud Mohammed Kamal Abd El Aziz

Dr. Hany El Sayed Abdel Haleem Saad

Cairo – (2016)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Mechanical Power Engineering

Studying the Swirling Flames Using Elliptical Cross-Sections

By

Mohamed Mohy El Din Mohamed Morsy

Bachelor of Science in Mechanical Engineering
(Mechanical Power Engineering)
Faculty of Engineering, Ain Shams University, 2011

Examiners' Committee

Name and Affiliation	Signature
Prof. Mahmoud Abd El Fattah El Qady	
Mechanical Power, El Azhar University	
Prof. Mahmoud Abd El Rasheed Nousseir	
Mechanical Power, Ain Shams University	
Dr. Mahmoud Mohammed Kamal Abd El Aziz	
Mechanical Power, Ain Shams University	

Date: 22 December 2016

Statement

This thesis is submitted as a partial fulfillment of Master of Science

in Mechanical Engineering, Faculty of Engineering, Ain Shams

University.

The author carried out the work included in this thesis, and no part

of it has been submitted for a degree or a qualification at any other

scientific entity.

Mohamed Mohy El Din Mohamed Morsy

Signature

......

Date: 22 December 2016

I

Researcher Data

Name : Mohamed Mohy El Din

Mohamed Morsy

Date of birth : 10th June, 1989

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Power Engineering

University issued the degree : Ain Shams University

Date of issued degree : June, 2011

Current job : Teacher Assistant – Faculty of

Engineering – Ain Shams

University

Thesis Summary

The current experimental work presents a comparative study on some factors influencing the combustion characteristics of LPG diffusion flame issuing from double concentric elliptic swirl burners using a radial exit multi-hole fuel nozzle. The factors under investigation were; the variation of the ellipse aspect ratio, the variation of the inner and outer swirl angles and the variation of the swirling mode (co vs counter swirl).

All experiments were conducted at the same air to fuel ratio corresponding to excess air 20%. The performance assessment of the burners under investigation was based on the analysis of the local flame temperature values, pollutant emissions concentrations of CO, UHC and NOx in addition to flame length measurements. The quantification of these parameters was coupled with frontal photos of the confined flame and the plotted flame temperature contours in order to attain a more comprehensive analysis. Investigating the effect of the variation of the burner aspect ratio, the performance of three elliptic swirlers having aspect ratios of 1.25,1.4 and 1.5 was compared to a circular baseline swirler, all the swirlers had equal inner swirl angle of 30 and outer swirl angle of 45 with a co swirling mode. It was found that there was a progressive enhancement in the burner performance with the increase of the aspect ratio. A decrease in values of CO, NOx and UHC was recorded with the increase of the aspect ratio, this decrease was most significant for the 1.5 aspect ratio swirler recording a decrease of 47%,58% and 45% in the average values of CO,NOx and UHC respectively. The flame length became increasingly shortened with the increase of the aspect ratio, the 1.5 aspect ratio swirler recoded the shortest flame length with a reduction of 44% in the flame length. Furthermore, investigating the plotted flame temperature contours along the major and minor axes directions of the elliptic swirlers, it was found that there was a difference in the shape of the contours along both directions where the contours had a narrower silhouette along the minor axis and higher peak flame temperature value. For the second comparative study two elliptic swirlers with an aspect ratio of 1.4 were compared one having an inner swirl angle of 45° and outer swirl angle 30°, the second swirler had an inner swirl angle of 30° and an outer angle of 45°. The 45(inner)-30(outer) swirler recorded lower values of pollutant emissions as a consequence of higher turbulence levels and enhanced mixing associated with the stronger inner swirl, a reduction of 14%,13.5% and 27% in the average values of CO,NOx and UHC was exhibited by the 45(inner)-30(outer) swirler. In addition to that, the flame of the 45(inner)-30(outer) swirler had a shorter length with a decrease in length of 15%. Finally investigating the effect of varying the swirling mode, two swirlers were compared each having an inner swirl angle of 30°, an outer swirl angle of 45° and an aspect ratio of 1.4. The co swirl recorded lower values of pollutant emissions with a reduction in the values of CO,NOx and UHC by 15%,12% and 17.5% respectively. in addition, the flame of the co swirling scheme was shorter by 10%. The previous results establish the superiority of the performance of the co swirl over that of the counter swirl mode. Finally, it is worth mentioning that the factors that lead to an enhanced burner performance (for the investigated parameters range) are; Co swirling scheme, an increase in the inner swirl strength and an increase in the swirler aspect ratio.

Key words:

Diffusion Flame, Elliptic Double Swirl, Aspect Ratio, Co swirl, Counter Swirl.

Acknowledgement

Praise be to Allah for awarding us with the completion of this work. I would like to express my deepest gratitude to my esteemed supervisors Prof. Dr. Mahmoud Mohamed Kamal and Dr. Hany El Sayed Abd El Haleem for their continuous support and guidance over the course of the investigation.

I would like to express my complete thankfulness to my great father and wife for their continuous support in every way possible.

In the end, my sincere appreciation for Eng.Ahmed Fahmy,Eng. Mahmoud Ameen, Eng. Ahmed Hassan, Eng. Mohamed Safy, Eng. Assem El Zaabalawy and Eng. Akram Awwad for their help and support. Also I would like to thank Mr. Ameen Abd El Lateef for his technical support in the laboratory.

Table of Contents

Statement
Researcher DataIl
Thesis SummaryIII
AcknowledgementV
Table of ContentsV
List of Figures X
List of TablesXIV
List of Abbreviations
List of SymbolsXVI
Chapter 1:Introduction
1.1 General: 1
1.2 Swirl Burners:
1.3 Elliptic Jet Burners:
1.4 Thesis Outline:
2 Chapter 2:Literature Review
2.1 Introduction:
2.2 Review of the Previous Work:
2.2.1 Aerodynamic Behavior and Combustion Characteristics of Swirl
Stabilized Burners:
2.2.2 Aerodynamic Behavior and Combustion Characteristics of Elliptic
Jets and Burners: 21
2.3 Aim of the present work:

3	Chapter	3: Theoretical Background	29
	3.1 Ph	ysical Interaction due to Swirl	29
	3.1.1	Flow recirculation:	30
	3.2 Dy	namics of Elliptic Jets:	31
	3.2.1	Characteristics of three dimensional jets:	32
	3.2.2	Self-induction mechanism:	32
	3.2.3	Axis switching phenomenon:	32
	3.2.4	Flow patterns:	33
	3.2.5	Velocity field:	33
	3.2.6	Mass entertainment characteristics:	36
4	Chapter	4 :Experimetal Test Rig and Measuring Techinques	39
	4.1 Int	roduction:	39
	4.2 Tes	st Rig:	41
	4.2.1	The Furnace:	41
	4.2.2	Burner design:	42
	4.2.3	Swirler body manufacturing:	43
	4.2.4	The air supply system:	45
	4.2.5	The Fuel Supply System:	45
	4.3 Me	easuring Techniques:	46
	4.3.1	Air mass flowrate measurements:	46
	4.3.2	Fuel mass flowrate measurements:	49
	4.3.3	Flame temperature measurements:	50
	4.3.4	Average furnace wall temperature measurements:	51
	4.3.5	Exhaust gas species concentration:	53

	4.4	1	Erro	or Analysis:	. 53
		4.4.1	1	The uncertainty analysis of air mass flowrate:	. 54
		4.4.2	2	The uncertainty analysis of air to fuel ratio calculation:	. 55
		4.4.3	3	Error analysis of flame temperature measurements:	. 56
		4.4.4	4	Error analysis of furnace wall temperature measurements:	. 56
		4.4.5	5	Error analysis of fuel volume flowrate measurements:	. 56
5		Chaj	pter 5	5 :Discussion of Results	. 57
	5.1	l	Intro	oduction:	. 57
	5.2	2	Tem	perature Measurements:	. 57
		5.2.1	1	Radial temperature distribution:	. 58
		5.2.2	2	Temperature contours:	. 58
	5.3	3	Flan	ne Length:	. 58
	5.4	1	Exh	aust Gas Analysis:	. 58
	5.5	5	Disc	cussion:	. 59
		5.5.1	1	The Effect of the Variation of the Ellipse Aspect Ratio:	. 59
		5.5.2	2	The Effect of the Variation of the Inner and Outer Swirl Angles:	. 70
		5.5.3	3	Comparative Study Between the CO and Counter Swirl:	. 79
6		Chaj	pter 6	5: Conclusions and Recommendation for Future Work	. 88
	6.1	l	Intro	oduction:	. 88
	6.2	2	Con	clusion:	. 88
	6.3	3	Rec	ommendation of Future Work:	. 89
R	efe	rence	es:		. 91
7		App	endix	x A: Physical Properties	. 96
8		App	endi	x B: Calibration Data	. 97

9	Appendix C: EES Code Formulation Used For Thermocouple's Radiation	
Cor	rection	104
10	Appendix D: Flame Temperature Values	105
	30-45-circular swirler:	105
	30-45-1.25-CO Swirler:	105
	30-45-1.4-CO Swirler:	106
	30-45-1.5-CO Swirler:	107
	30-45-1.4-CN Swirler:	107
	45-30-1.4-CO Swirler:	108
11	Appendix E: Radial Flame Temperature Distribution	110
	30-45-Circular:	110
	30-45-1.25-CO Swirler:	111
	30-45-1.4 CO Swirler:	112
	30-45-1.5 Swirler:	114
	30-45-1.4-CN Swirler:	115
	45-30-1.4 CO Swirler:	117
12	Appendix F: Flame Temperature Contours	119
	30-45-Circular:	119
	30-45-1.25 CO Swirler:	120
	30-45-1.4 CO Swirler:	122
	30-45-1.5 CO Swirler:	124
	30-45-1.4-CN Swirler:	126
	45-30-1.4-CO Swirler:	128
14	Appendix G: Values of Exhaust Gas Species	130
	30-45-Circular Swirler:	130

	30-45-1.25-CO Swirler:	130
	30-45-1.4-CO Swirler:	130
	30-45-1.5-CO Swirler:	131
	30-45-1.4-CN Swirler:	131
	45-30-1.4-CO Swirler:	131
16	Appendix H: Radial Distribution of the Exhaust Gas Species:	132
	30-45-Circular Swirler:	132
	30-45-1.25-CO Swirler:	133
	30-45-1.4-CO Swirler:	134
	30-45-1.5-CO Swirler:	135
	30-45-1.4-CN Swirler:	136
	45-30-1.4-CO Swirler:	137

List of Figures

Fig. 3-1: Graphical Demonstration of the Mean Velocity Cross Sections at 3
Downstream Positions From the Port Demonstrating Axis Switching [50]
Fig. 3-2: Mean Axial Velocity Profiles Along the Jet Major and Minor Axis Planes
36
Fig. 3-3: Entrainment Rates of Elliptic Jets Compared to Axi-Symmetric and 2-D
Jet
Fig. 3-4: Elliptic Jet Lateral Mean Flow at a Position Close to the Nozzle 38
Fig. 4-1: Test Rig Elevation Showing Main Components
Fig. 4-2: Isometric View of the Test Rig
Fig. 4-3: Furnace Section Showing the Locations of Measuring Tapings
Fig. 4-4: Swirler's Dimensions Legend
Fig. 4-5: Photos of Manufactured Swirlers
Fig. 4-6: Burner Detail Showing the Fuel System
Fig. 4-7: Dimensions of The Air Orifice
Fig. 4-8: Air Orifice Calibration Test Rig
Fig. 4-10: LPG Gas Rotameter Calibration Test Rig
Fig. 4-12: K-Type Thermocouple Calibration Test Rig51
Fig. 5-29: Comparison Between Radial Temperature Profiles of the Circular
,1.25,1.4 and 1.5 Aspect Ratio Swirlers at Z/D=0.16 Along (a) The Major Axis, (b)
The Minor Axis 60
Fig. 5-30: Comparison Between Radial Temperature Profiles of the Circular
,1.25,1.4 and 1.5 Aspect Ratio Swirlers at Z/D=0.36 Along (a) The Major Axis, (b)
The Minor Axis
Fig. 5-31: Comparison Between Radial Temperature Profiles of the Circular
,1.25,1.4 and 1.5 Aspect Ratio Swirlers at Z/D=0.84 Along (a) The Major Axis, (b)
The Minor Axis
Fig. 5-32: Comparison Between Radial Temperature Profiles of the Circular
,1.25,1.4 and 1.5 Aspect Ratio Swirlers at Z/D=1.08 Along (a) The Major Axis, (b)
The Minor Axis63

Fig. 5-33: Comparison Between Flame Temperature Contours of the (a)Circular, (b)
AR=1.25, (c) AR=1.4 and (d) AR=1.5 Aspect Ratio Swirlers Along the Major Axis
64
Fig. 5-34: Comparison Between Flame Temperature Contours of the (a)Circular, (b)
AR=1.25, (c) AR=1.4 and (d) AR=1.5 Aspect Ratio Swirlers Along the Minor Axis
65
Fig. 5-35: Frontal Photos of the Confined Flame for the (a) Circular, (b) AR=1.25,
(c)=AR=1.4 and (d) AR=1.5 Swirlers
Fig. 5-36: Comparison of the Average Values of CO Emissions Between the
Circular, AR=1.25, AR=1.4 and AR=1.5 Swirlers
Fig. 5-37: Comparison of the Average Values of UHC Emissions Between the
Circular, AR=1.25, AR=1.4 and AR=1.5 Swirlers
Fig. 5-38: Comparison of the Average Values of NOx Emissions Between the
Circular, AR=1.25, AR=1.4 and AR=1.5 Swirlers
Fig. 5-39: Comparison Between Radial Temperature Profiles of the 45(i)-30(o) and
30(i)-45(o) Swirlers at Z/D=0.16 Along (a) The Major Axis, (b) The Minor Axis. 72
Fig. 5-40: Comparison Between Radial Temperature Profiles of the 45(i)-30(o) and
30(i)-45(o) Swirlers at Z/D=0.36 Along (a) The Major Axis, (b) The Minor Axis. 73
Fig. 5-41: Comparison Between Radial Temperature Profiles of the 45(i)-30(o) and
30(i)-45(o) Swirlers at Z/D=0.84 Along (a) The Major Axis, (b) The Minor Axis. 74
Fig. 5-42: Comparison Between Radial Temperature Profiles of the 45(i)-30(o) and
30(i)-45(o) Swirlers at Z/D=1.08 Along (a) The Major Axis, (b) The Minor Axis. 75
Fig. 5-43: Comparison Between Flame Temperature Contours of (a) 45(i)-30(o) and
(b) 30(i)-45(o) Swirlers Along the Major Axis
Fig. 5-44: Comparison Between Flame Temperature Contours of (a) 45(i)-30(o) and
(b) 30(i)-45(o) Swirlers Along the Minor Axis
Fig. 5-45: Frontal Photos of the Confined Flame for the of (a) 45(i)-30(o) and (b)
30(i)-45(o) Swirlers
Fig. 5-46: Comparison of the Average Values of CO Emissions Between the 45(i)-
30(o) and 30(i)-45(o) Swirlers

Fig. 5-47: Comparison of the Average Values of UHC Emissions Between the
45(i)-30(o) and 30(i)-45(o) Swirlers
Fig. 5-48: Comparison of the Average Values of NOx Emissions Between the 45(i)-
30(o) and 30(i)-45(o) Swirlers
Fig. 5-49: Comparison Between Radial Temperature Profiles of the Co and Counter
Swirlers at Z/D=0.16 Along (a) The Major Axis, (b) The Minor Axis80
Fig. 5-50: Comparison Between Radial Temperature Profiles of the Co and Counter
Swirlers at Z/D=0.36 Along (a) The Major Axis, (b) The Minor Axis81
Fig. 5-51: Comparison Between Radial Temperature Profiles of the Co and Counter
Swirlers at Z/D=0.84 Along (a) The Major Axis, (b) The Minor Axis
Fig. 5-52: Comparison Between Radial Temperature Profiles of the Co and Counter
Swirlers at Z/D=1.08 Along (a) The Major Axis, (b) The Minor Axis
Fig. 5-53: Comparison Between Flame Temperature Contours of the (a) Co and (b)
Counter Swirlers Along the Major Axis
Fig. 5-54: Comparison Between Flame Temperature Contours of the (a) Co and (b)
Counter Swirlers Along the Minor Axis
Fig. 5-55: Frontal Photos of the Confined Flame for the of (a) Co and (b) Counter
Swirlers
Fig. 5-56: Comparison of the Average Values of CO Emissions Between the Co and
Counter Swirlers
Fig. 5-57: Comparison of the Average Values of UHC Emissions Between the Co
and Counter Swirlers
Fig. 5-58: Comparison of the Average Values of NOx Emissions Between the Co
and Counter Swirlers. 87