

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

EFFECTS OF MOULD MODIFICATIONS ON CASTING SPEED IN THE CONTINUOUS CASTING OF HIGH STRENGTH STEEL GRADE AO.

ار کرد ایران کر Metallurgy and Material Eng. Dept.
Faculty of Petroleum & Mining Eng. Suez Canal University

ENG. SABER M. ABDEI

Continuous Casting Engineer Al Ezz Steel Company

Under the supervision of Prof. Dr. Eng. M.I.Abbas

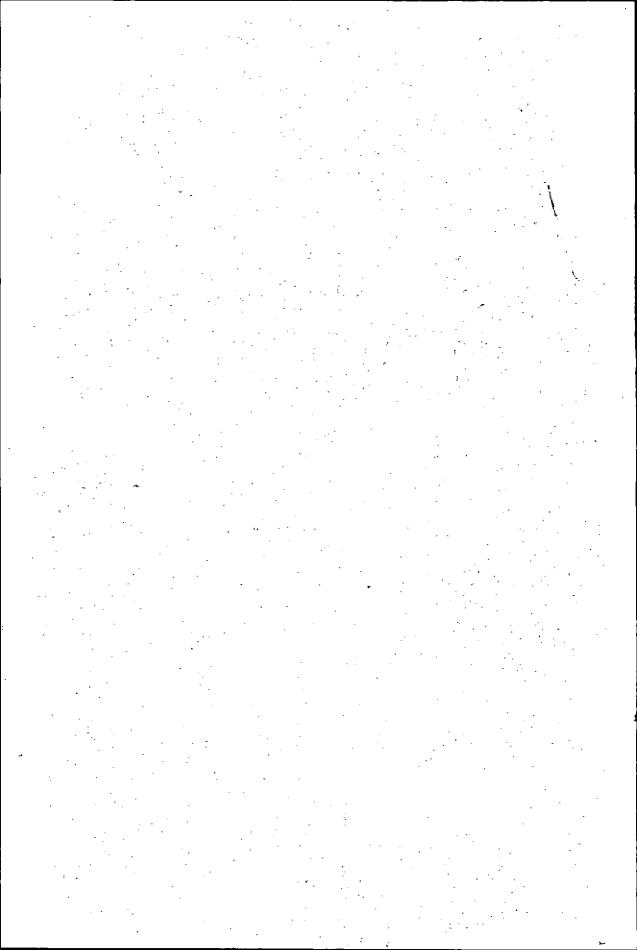
Metallurgy and Material Eng. Dept: Fac. Of Pet. & Mining Eng.

Prof. Dr. Eng. F.N.El Sabbahy

Metallurgy and Material Eng. Dept.

ه الان ع جر

Fac. of Pet. & Mining Eng.


Dr. Eng. Gamal M. Megahed

Al Ezz Steel Company

Suez Canal University

2002

ACKNOWLEDGEMENT


I have pleasure to express my sincere gratitude to Prof. Dr. Mahmoud I. Abbas, Member of Metallurgy and Material Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, for his guidance, encouragement and for many valuable suggestions and fruitful advice at all stages of work.

I would like to express my deep appreciation to Prof. Dr. Fawzy N. El-Sabbahy, Member of Metallurgy and Material Engineering Department, and Dr. Eng. Gamal M. Megahed, Al Ezz Steel Company, for great efforts and enlightening discussions through the preparing of this thesis.

I would like also to thank Melt shop production management, All Ezz steel company, for their help through the practical work of this study.

Special acknowledgment are due to all members of the continuous casting department of All Ezz steel company for their help in conducting the experimental work.

Eng. Saber M. Abdel Aziz .

Contents

Title	Page
Chapter 1: Introduction	1
Chapter 2 : Literature Survey	3
2.1 Historical Background	3
2.2 Brief Description and basic principles of the continuous casting	
process	6
2.3 Evolution of machine modification.	13
2.4 Advantages of continuous casting over ingot	
casting	16
2.4.1. Improved yield	18
2.4.2. Reduced energy consumption	18
2.5 Main parts of continuous casting machine	20
2.5.1Tundish technology	20
2.5.2.Mould technology	21
2.5.2.1. Mould material.	23
2.5.2.2 Mould oscillation	27
2.5.2.3. Mould heat transfer	30
2.5.3 Solidification in the mould	36
2.5.4 The strand solidification model	38
2.6.Secondary cooling	38
2.6.1. First cooling sector	40
2.6.2. Second cooling sector	40
2.6.3. Third cooling sector.	40
2.6.4. Fourth cooling sector	40
2.6.5. Heat extraction in the secondary cooling zone	40
2.6.6. Solidification in the secondary cooling zone	42
2.7. Billet surface temperature	44

2.8. Withdrawal and straightening unite	49
2.9.Dummy bar	50
Chapter 3 : Practical and Experimental work	5 1
	51
3.1 Steel grade	51
3.2 Mould	51
3.2.1 Mould dimensions	51
3.3. Solid skin thickness measurements	53
3.4. Determination of mould wall distortion.	53
3.5. Temperature measurements	53
3.5.1. Temperature measurements of primary water	53
3.6. Testing	57
3.6.1. Tension test.	57
3.6.2. Corrosion test.	57
3.7 Metallography	59
3.7.1. Microstructures	59
Chapter 4: Results and Discussion	60
4.1 Improving productivity	60
4.1.1 Improving casting speed	62
4.1.1.1 Improving strand cooling, (primary	
&secondary cooling)	6 2
4.1.1.2 Mould modification	6 2
4.2 Effect of Improving and	
4.2 Effect of Improving casting speed on AT in the short and long	
moulds at various tundish steel super-heat	64

4.3	Mould heat transfer	69
4.3	.1 Heat transfer for short mould type	69
4.3	.2 Heat transfer for long mould type	69
4.3	.3 Effect of tundish steel super heat on mould heat	
	transfer	72
4.3	.4 Effect of increasing casting speed on mould heat	
	transfer	74
4.4	Solidification in the mould (solid skin formation)	100
4.4	.1 Effect of increasing casting speed on solid skin	
	thickness	76
4.4	.2 Calculations of solid skin thickness along short mould	
	type	80
4.4	.3 Calculations of solid skin thickness in case of long mould	
-	type	80
4.5	Liquid pool depth (metallurgical length)	85
4.6	The solid-liquid ratio sketches at various casting speeds along	
	casting strand	88
4.7	Effect of casting speed on billet surface temperature	104
4.8	Strand straightening and strain rate evolved	106
4.9	Continuous casting process profiles showing the solid skin thickness,	
	billet surface temperature, liquid core temperatures and liquid core	
	length at $V_C = 3.5$ m/min &T.T=1545 ±5C° in AL EZZ steel billet	
	caster	108
4.10	Mould wall distortion	111
4.11	Inspection of billets quality	113
4.1	1.1 Visual examinations of produced billets	114
4.1	1.2Micro-examinations.	115
	4.11.2.1.Micro-structures of produced billets	115
	4.11.2.2.Micro-structures of produced hot rolled bars (final	
	products)	115
4.12	Mechanical testing results of produced hot rolled bars after various	
	continuous casting conditions	120
		٠
	•	

continuous casting con	nditions	120
Chapter 5 : Conclusion	ns	124
Chapter 6 : References	······	125
	,	