

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Public Works Department

Optimization of Solid Waste Management in Rural Villages

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Masters of Science in Civil Engineering

(Public Works Dept. – Sanitary Engineering)

Prepared By

Samah Anwar Soliman

B.Sc. of Civil Engineering (Public Works) Ain Shams University, 2008

Supervised By

Prof. Dr. Ahmed Hassan Gaber

Professor of Chemical Engineering Chemical Engineering Department Faculty of Engineering Cairo University

Prof. Dr. Mohamed Hassan Abdel Razik

Professor of Sanitary Engineering
Public Works Department
Faculty of Engineering
Ain Shams University

Dr. Sherien Ali Elagroudy

Associate Professor of Sanitary Engineering
Public Works Department
Faculty of Engineering
Ain Shams University

Cairo - 2015

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Approval sheet

Optimization of Solid Waste Management in Rural Villages

By Samah Anwar Soliman

B.Sc. Civil Engineering, Ain Shams University, 2008 This thesis for M.Sc. degree had been approved by:

Name Signature

Prof. Dr. Mohamed El Sayed Basiouny

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Benha University

Prof. Dr. Fikry Halim Ghobrial

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University

Prof. Dr. Ahmed Hassan Gaber

Prof. of Chemical Engineering Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Hassan Abdel-Razik

Prof. of Sanitary and Environmental Engineering Faculty of Engineering, Ain Shams University

DEDICATION

Many thanks and much appreciation are given to my parents for supporting my work and encouraging me to set up high goals of achieving my ambitions.

My further thanks go to my sisters and brother who have been proud and supportive of my endeavors.

Last but not the least; I am thankful to my faithful friends.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of

Engineering for the degree of M.Sc. in Civil Engineering. The work

included in this thesis was carried out by the author in the department of

Public Works, Faculty of Engineering, Ain Shams University from 2011 to

2015.

No part of the thesis has been submitted for a degree or qualification at any

other university or institution. The candidate confirms that the work

submitted is his own and that appropriate credit has been given where

reference has been made to the work of others.

Date 27 / 6 / 2015

Signature

Samah Anwar Soliman

ACKNOWLEDGMENT

I would like to express my greatest gratitude and acknowledgment to my supervisors **Prof. Dr. Mohamed Hassan Abdel-Razik, Prof. Dr. Ahmed Hassan Gaber** and **Dr. Sherien Ali Elagroudy** for their guidance, faithful supervision, helpful suggestions, great support, cooperation and help in thesis.

I would like to thank **Dr. Ahmed Hassan Gaber** for helping me a lot in defining the topic and the thesis idea.

I would like to thank **Eng. Mohamed El-Khayat** and **Mr. Mohamed Saad** as they helped me in gathering the required data of Desoq district and provided me with contacts in Kafr El Sheikh Governorate to help me in data acquisition.

I would like to thank my Dad, **Mr. Anwar Soliman,** who was of great hlp during site visits and data acquisition.

I would like to thank **Eng. Ahmed Shouman** who provided some field information and data that were of great help.

ABSTRACT

Name: Samah Anwar Soliman

Title: Optimization of Solid Waste Management in Rural Villages

Institute: Faculty of Engineering, Ain Shams University

Specialty: Public Works, Sanitary & Environmental Engineering

A financial analysis – based optimization model is applied for a municipal solid waste (MSW) management system in Desoq District, Kafr El Sheikh, Egypt with a population of about 0.5 million capita. Centralized, Clustered and Decentralized MSWM systems were studied. Thirteen different scenarios that take into account different levels of solid waste treatment including sorting, composting and waste to energy were studied. In the Centralized, Clustered and Decentralized systems, the minimum level of treatment should be sorting and composting in order to achieve the minimum financial deficit. The optimum system is the Centralized system with sorting and composting facilities and one landfill with financial deficit of (8) EGP/ton/d.

Supervisors:

Prof. Dr. Ahmed Hassan Gaber

Prof. Dr. Mohamed Hassan Abdel-Razik

Dr. Sherien Ali Elagroudy

Faculty of Engineering Summary for M.Sc. Thesis Prepared by

Eng. Samah Anwar Soliman

Titled

"Optimization of Solid Waste Management in Rural Villages"

Supervised by

Prof. Dr. Ahmed Hassan Gaber Prof. Dr. Mohamed Hassan Abd ElRazik Associate Prof. Sherien Aly Elagroudy

Municipal solid waste (MSW) management represents a major challenge for urban and rural communities worldwide; and particularly in Egyptian rural villages where low attention and resources exist. Besides, MSW projects require bulky investments, so wise planning is essential to reach the proposed goal at minimum cost.

This study aims at the selection of the optimum method for MSW management in rural Egyptian villages, through the application of 13 MSW management scenarios representing different system configurations (**Centralized**, **Clustered** And **Decentralized**) and different treatment levels (sorting, composting and waste-to-energy). Desoq District, in Kafr El Sheikh Governorate is selected as a case study with a population of about 0.5 million capita.

The optimum MSW management system is selected on the basis of financial analysis including the capital cost of equipment and operation and maintenance cost including labor, transportation, fuel and electricity. The

minimum financial deficit is adopted as the criterion for the selection of the optimum MSW management system.

The results indicated that the optimum system is the **Centralized** system with sorting and composting facilities and one landfill with a minimum financial deficit of (8) EGP/ton/d.

Table of Contents

CHAP	TER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem Definition	2
1.3	Community-based Solid Waste Management	3
1.4	Centralized Systems	3
1.5	Objectives	4
1.6	Thesis Organization	5
CHAP	ΓER 2 LITRATURE REVIEW	6
2.1	Introduction	6
2.2	Sources and Types Solid Waste	7
2.3	Municipal Solid Waste Management System	9
2.4	Solid Waste Treatment	18
2.5	Modeling of Solid Waste Management Systems	22
CHAP	TER 3 METHODOLOGY	32
3.1	Introduction	32
3.2	Solid Waste Management System	32
3.3	Study Area	32
3.4	Work Plan	35
3.5	System Configuration and Level of Treatment	41
3.6	Optimization Problem	43
CHAP	TER 4 RESULTS AND DISCUSSION	48

4.1	Introduction	48
4.2	MSW Management Scenarios	48
4.3	Selection of Landfill Location	49
4.4	Treatment Facility Cost	55
4.5	Landfill Cost	59
4.6	Transportation Cost	60
4.7	Revenue Data	62
4.8	Results	62
4.9	Optimum Scenario	67
СНАРТ	ER 5 CONCLUSIONS AND RECOMMENDATIONS	69
5.1	General	69
5.2	Conclusions	70
5.3	Recommendations for Further Work	70
REFER	ENCES	71
APPEN	DICES	73
	DIX - A MPL Software and the Solution of Landfill Best a Selection	
	DIX - B Cost Function Used to Expect the Treatment	
Facilitie	s Capital and Operation Cost	

APPENDIX - C Transportation Distances from Source to Treatment Facility under Different System Configurations

List of Figures

Figure (1.1) - Shows the Bad Effect of Burning Solid Waste
Figure (1.2) - Solid Waste Dumping, Khadrawia Drain
Figure (1.3) - The Difference between the Centralized, Clustered and Decentralized Systems
Figure (2.1) - The Relationship Between the Functional Elements of Municipal Solid Waste Management System. (Tchobanoglous et al, 1993)
Figure (2.2) - Waste Collection Point in Al Gharbya Governorate . 12
Figure (2.3) – Separation and Recycling of Solid Waste, Daqahlia Governorate
Figure (2.4) - 15 th May Landfill South Cairo
Figure (2.5) - Baled Sorted Plastic for Recycling in Manshiet Naser
Figure (2.6) - Types of Solid Waste Management Modeling 22
Figure (2.7) - Types of Solid Waste Management Methods 22
Figure (3.1) - Locations of Desoq in Relation to Kafr El-Sheikh Governorate
Figure (3.2) - The Map of Desoq District and the Villages under Study
Figure (3.3) - The Proposed Methodology
Figure (3.4) - Tal El Matior Open Dump Site
Figure (3.5) - The First Sample after Sorting
Figure (3.6) - The Used Weigh in Waste Weighting

Figure (3.7) - Average Waste Samples Composition, Tal Al Matior, Desoq
Figure (3.8) - MSW System Configuration
Figure (3.9) - MSW Level of treatment
Figure (3.10) - The Optimization Model Steps
Figure (4.1) - The Suggested Landfill Locations
Figure (4.2) - The Centralized System Suggested Treatment Facilities Locations
Figure (4.3) - The Clustered System Suggested Treatment Facilities Locations
Figure (4.4) - The Decentralized System Suggested Treatment Facilities Locations
Figure (4.5) - System Flow Diagram for Sorting and Composting Plant
Figure (4.6) - System Flow Diagram for Sorting and RDF Plant 55
Figure (4.7) - Capital Cost of Different Scenarios
Figure (4.8) - Operation Cost of Different Scenarios
Figure (4.9) - Transportation Cost of Different Scenarios 66
Figure (4.10) - Revenue of Different Scenarios
Figure (4.11) – Financial Deficit of Different Scenarios
Figure (4.12) - The Selected Treatment Facility Location for the Best Scenario

List of Tables

Table (2.1) - Generated Solid Waste in Egypt, 2001, 2006 and 2012 7
Table (3.1) - Population of the Villages in the Study Area 36
Table (3.2) - Waste Composition for the Three Samples (Wt. %) 39
Table (3.3) - Waste Composition for Behira and Sharqia Governorates Samples (Wt. %)
Table (4.1) - MSW Management Scenarios 48
Table (4.2) - The Capital Cost For Sorting, Composting and RDF Plant (Capacity 60t/d) 56
Table (4.3) - The Operation Cost for Sorting, Composting and RDF Plant (Capacity 60t/d) 59
Table (4.4) - The Capital Cost for Landfill (Capacity 60t/d) 59
Table (4.5) - The Operation Cost for Landfill (Capacity 60t/d) 60
Table (4.6) - The Transportation Cost from Source to Treatment Facility Vehicle Type (A) 60
Table (4.7) - The Transportation Cost from Source to Treatment Facility Vehicle Type (B) 61
Table (4.8) - The Transportation Cost from Source to Treatment Facility Vehicle Type (C) 61
Table (4.9) - Recyclables Selling Prices 62
Table (4.10) - Capital Cost of MSW Management Scenarios (EGP/t/d) 63
Table (4.11) - Operation Cost of MSW Management Scenarios (EGP/t/d) 63
Table (4.12) - Transportation Cost of MSW Management Scenarios (EGP/t/d) 63

Table (4.13) - Revenue of MSW Management Scenarios (EGP/t/d)64
Table (4.14) – Calculation of Financial Deficit of MSW M	I anagement
Scenarios (EGP/t/d)	64

ABBREVIATIONS

SWM: Solid Waste Management.

MSW: Municipal Solid Waste.

MSWMS: Municipal Solid Waste Management System.

MPL: Modeling Programming Language.

MRF: Material Recovery Facility.

S: Sorting.

C: Composting.

RDF: Refuse Derived Fuel.