MOLECULAR GENETIC CHARACTERIZATION OF EGYPTIAN AND SYRIAN TILAPIA FISH

BY MAHMOUD MOALLA IBRAHIM

B.Sc. Agric. Sc. (Animal Production), Teshreen University, 1996

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Genetics)

Department of Genetics
Faculty of Agriculture -Ain Sham University

Approval sheet

MOLECULAR GENETIC CHARACTERIZATION OF EGYPTIAN AND SYRIAN TILAPIA FISH

BY

MAHMOUD MOALLA IBRAHIM

B.Sc. Agric. Sc. (Animal Production), Teshreen University, 1996

This thesis for M.Sc. degree has been approved by:	
Prof. Dr. Ezzat Awwad Ibrahim Prof. of fisheries, General Authority for Fish Resources Development	
Prof. Dr. Ali Zein El-Abidin Abdelsalam Prof. Emeritus of Genetics, Fac. of Agric., Ain Shams Universit	
Prof. Dr. Alia Ahmed El-Seoudy Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shar University	
Prof. Dr. Mohamed Abdel-Salam Rashed Prof. of Genetics, Faculty of Agriculture, Ain Shams University	

Date of Examination 2 / 10 / 2005

MOLECULAR GENETIC CHARACTERIZATION OF EGYPTIAN AND SYRIAN TILAPIA FISH

BY

MAHMOUD MOALLA IBRAHIM

B.Sc. Agric. Sc. (Animal Production), Teshreen University, 1996

Under the supervision of:

Prof. Dr. Mohamed Abdel-Salam Rashed
Prof. of Genetics, Dept. of Genetics, Faculty of Agriculture, Ain
Shams University (Principal supervisor)

Prof. Dr. Alia Ahmed El-Seoudy

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Prof. Dr. Adib Ali Saad

Prof. of Fish Biology and Fisheries, Faculty of Agriculture, Teshreen University

ABSTRACT

Mahmoud Moalla Ibrahim. Molecular Genetic Characterization of Egyptian and Syrian Tilapia Fish. Unpublished Master of Science Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2005.

A comparative study for four Tilapia populations (Egyptian *T.zillii* and *O.aureus* populations denoted as E.T.z and E.O.au; Syrian *T.zillii* and *O.aureus* denoted S.T.z and S.O.au, respectively) was carried out. Biochemical and molecular genetic structure of the relevant populations were investigated using SDS-PAGE and RAPD techniques.

A high degree of similarity was detected within each population, and the similarity values were equal to one when calculated from Trissoluble protein banding patterns, and ranged from 0.71 to 1 based on alcohol-soluble protein banding patterns. These values ranged from 0.82 to 1 when calculated from water-soluble protein banding patterns. A comparative operation between all protein banding patterns revealed the presence of *T.zillii* population-specific protein markers either in case of Tris or alcohol or water-soluble proteins.

The average similarity values among studied populations based on RAPD analysis were: 0.646, 0.229, 0.32, 0.328, 0.222 and 0.338 between each pair of the following populations: S.T.z with E.T.z, S.T.z with S.O.au, S.T.z with E.O.au, E.T.z with S.O.au, E.T.z with E.O.au and S.O.au with E.O.au respectively. The population-specific DNA markers were detected, and the numbers of polymorphic RAPD amplicons (RAPD markers) were: 14, for S.T.z population; 10, for E.T.z population; 23, for S.O.au population and 28, for E.O.au population. Also, species-specific DNA markers were detected, and their numbers were 24 for *T.zillii* species; and 42 for *O. aureus* species.

The data, which was inferred from molecular markers obtained by **RAPD-PCR** were used to calculate the genetic distances, and showed

that *T. zillii* was distantly related from *O.aureus*. Also, the S.T.z and E.T.z had relatively high level of genetic relationships, but S.O.au and E. O.au had a low level of genetic relationships.

The present study revealed that the RAPD technique is a powerful tool in detecting genetic variations.

Key words: Tilapia, Biochemical markers, SDS-PAGE, RAPD-PCR, Polymorphism, Genetic distance.

AKNOWLEDGEMENT

Great thanks to my country **Syria**, which gave me the opportunity to complete my post-graduate education, also thanks forwarded to my second country **Egypt** which received me and offered all available facilities and abilities. As well as, author whishes that the Arab and Islamic nations possess the opportunity to realize breakthroughs in its development.

The author wishes to express his great and sincere thanks, deepest respects and appreciations to his principle supervisor **Prof. Dr Mohamed Abdel-salam Rashed** for his continuous encouragement and valuable advises. Also for his continuous support by the thesis requirements.

Sincere respects and magnitude appreciations are offered to my **Prof. Dr Alia Ahmed El-Seoudy** for her continuous revising, editing and the valuable directions in order to give the manuscript its better final form.

Thanks and appreciations are oriented to my **Prof. Dr Adib Ali Saad** for his kind help and continuous encouragement also for his role in resolving many problems. He merited my deep respects.

The author can not forgot his brother **Dr. Yasser Mohamed Saad**, and thank him too much for his frequent exist with him in the laboratory to teach him thesis methodology, also he pray the god to give him good future. The author will not forget to thank his laboratory **colleagues** for their help and advises and he express them his sincere regard.

Firstly and finally the author offers his family; parents, wife, sons, brothers and sisters his great love for their patient and encouragement.

CONTENTS

Title	page
I. INTRODUCTION	1
II.REVIEW OF LITERATURE	4
1. Biochemical genetic characterization	4
2. Molecular genetic characterization	10
III. MATERIALS AND METHODS	20
1. Tilapia Populations	20
2. Organs sampling	20
3. Protein extraction.	20
4. Protein electrophoresis	21
4. 1. Stock solutions	21
4. 1. 1. Gel buffers	21
4. 1. 1. A -Resolving gel buffer (4x Tris-HCl/SDS, pH 8.8)	21
4. 1. 1. B -Stacking gel buffer (4x Tris-HCl/SDS, pH 6.8)	21
4. 1. 2. Acrylamide stock solution (30 %)	22
4. 1. 3. Ammonium persulfate stock solution (APS 10 % W/V)	22
4. 1. 4. Sodium dodecyl sulfate stock solution (SDS 10 % W/V)	22
4. 1. 5. Electrode buffer (Running buffer)	22
4. 1. 6. Staining solution	23
4 1 7 Destaining solution	23

4. 2. Sample buffers	23
4. 2. 1. Protein extraction buffer (Tris buffer)	23
4. 2. 2. Lan's buffer or SDS sample buffer (2X)	23
4. 3. Gel preparation	24
4. 4. Sample application	24
4. 5. Electrophoresis conditions	25
4. 6. Staining and destaining operation	25
5. DNA extraction and purification	25
6. Stock solutions	26
6. 1. DNA extraction buffer (STE)	26
6. 2. Tris-EDTA buffer (TE), pH 8.0.	27
6. 3. Agarose gel buffer (5x Tris-borate (TBE)), pH 8.0	27
6. 4. DNA running buffer (electrode buffer, 1x TBE), pH 8.0	27
6. 5. Ethidium bromide dye	27
6. 6. Sample loading dye (5 x)	27
7. Amplification conditions and electrophoresis	28
8. Polymerase chain reaction (PCR) conditions	28
9. PCR product preparation for electrophoretic separation	29
10. Agarose gel preparation	29
11. Primers	30
12. Gel photographing	30
13. Statistical analysis	31
IV. RESULTS AND DISCUSSION	32

-Intra and inter-population variation of Egyptian and Syrian <i>T.zillii</i>	
and O.aureus populations	32
I. intra-population variation	32
I. 1. Intra-population variation based on Tris-soluble muscle	
proteins	32
I. 1. 1. Abbasa location	32
I. 1. 1. 1. <i>T.zillii</i> population	32
I. 1. 1. 2. <i>O.aureus</i> population	32
I. 1. 2. Kalubia location	37
I. 1. 2. 1. <i>T.zillii</i> population	37
I. 1. 2. 2. O. aureus population	37
I. 1. 3. Syrian location (El-ssen farm)	37
I. 1. 3. 1. <i>T.zillii</i> population	37
I. 1. 3. 2. <i>O. aureus</i> population	38
I. 2. Intra-population variation based on Alcohol-soluble muscle proteins	46
I. 2. 1. Abbasa location	46
I. 2. 1. 1. <i>T.zillii</i> population	46
I. 2. 1. 2. O.aureus population	46
I. 2. 2. Kalubia location	46
I. 2. 2. 1. <i>T.zillii</i> population	46
I. 2. 2. 2. O.aureus population	49
I. 2. 3. Syrian location (El-ssen farm)	49
I. 2. 3. 1. <i>T.zillii</i> population	49

I. 2. 3. 2. <i>O. aureus</i> population	52
I. 3. Intra-population variation based on water-soluble muscle	E 1
proteins	54
I. 3. 1. Abbasa location	54
I. 3. 1. 1. <i>T.zillii</i> population	54
I. 3. 1. 2. <i>O. aureus</i> population	55
I. 3. 2. Kalubia location	55
I. 3. 2. 1. <i>T.zillii</i> population	55
I. 3. 2. 2. <i>O.aureus</i> population	60
I. 3. 3. Syrian location (El-ssen farm)	64
I. 3. 3. 1. <i>T.zillii</i> population	64
I. 3. 3. 2. <i>O.aureus</i> population	64
II. Inter-species variations and biochemical markers	69
RAPD-PCR DNA Markers	71
V. SUMMARY	81
VI. REFERENCES.	85
ARABIC ABSTRACT	

List of Tables

N°	Title	page
1	Composition of 15 % resolving gel and 3.9 % stacking gel	24
2	The codes, sequences, and GC per cent contents of primers used during DNA RAPD-PCR	30
3	Polymorphisms within <i>T.zillii</i> population of Egyptian Abbasa population inferred from the analysis of SDS-PAGE pattern of Tris soluble muscle proteins	34
4	Polymorphisms within <i>O. aureus</i> population of Egyptian Abbasa population inferred from the analysis of SDS-PAGE pattern of Tris soluble muscle proteins	36
5	Polymorphisms within <i>T.zillii</i> population of Egyptian Kalubia population inferred from the analysis of SDS-PAGE pattern of Tris soluble muscle proteins	39
6	Polymorphisms within <i>O. aureus</i> population of Egyptian Kalubia population inferred from the analysis of SDS-PAGE pattern of Tris soluble muscle proteins	41
7	Polymorphisms within <i>T.zillii</i> population of Syrian location inferred from the analysis of SDS-PAGE pattern of Tris soluble muscle proteins	43
8	Polymorphisms within <i>O. aureus</i> population of Syrian location inferred from the analysis of SDS-PAGE pattern of Tris soluble muscle proteins	45
9	Polymorphisms within <i>T.zillii</i> population of Egyptian Abbasa population inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	47

10	Polymorphisms within <i>O. aureus</i> population of Egyptian Abbasa location inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	48
11	Polymorphisms within <i>T.zillii</i> population of Egyptian Kalubia location inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	50
12	Polymorphisms within <i>O.aureus</i> population of Egyptian Kalubia location inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	51
13	Polymorphisms within <i>T.zillii</i> population of Syrian location inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	53
14	Polymorphisms within <i>O. aureus</i> population of Syrian location inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	54
15	Polymorphisms within <i>T.zillii</i> population of Egyptian Abbasa location inferred from the analysis of SDS-PAGE pattern of water soluble muscle proteins	57
16	Polymorphisms within <i>O. aureus</i> population of Egyptian Abbasa location inferred from the analysis of SDS-PAGE pattern of water soluble muscle proteins	59
17	Polymorphisms within <i>T.zillii</i> population of Egyptian Kalubia location inferred from the analysis of SDS-PAGE pattern of alcohol soluble muscle proteins	61
18	Polymorphisms within <i>O.aureus</i> population of Egyptian Kalubia location inferred from the analysis of SDS-PAGE pattern of water soluble muscle proteins	63

19	Polymorphisms within <i>T.zillii</i> population of Syrian location inferred from the analysis of SDS-PAGE pattern of water soluble muscle proteins	64
20	Polymorphisms within <i>O. aureus</i> population of Syrian location inferred from the analysis of SDS-PAGE pattern of water soluble muscle proteins.	67
21	The averages of homogeneity within tilapia populations (<i>O. aureus</i> and <i>T. zillii</i>) from different locations	69
22	The similarity indexes between tilapia species (<i>O.aureus</i> and <i>T.zillii</i>) from different locations	70
23	Number of amplicons and the number of polymorphic amplicons related to each population and generated by each primer for the four populations.	75
24	Number of amplicons and the number of polymorphic amplicons related to each species and generated by each primer for the four populations	75
25	Comparison between the bulked individuals of the four populations of Tilapia based on RAPD-PCR DNA Markers	76
26	Average of similarity values between Egyptian and Syrian Tilapia populations	78

List of Figures

N	Title	page
1	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Abbasa), 0.1 M Trissoluble muscle proteins	33
2	SDS-PAGE profile of <i>O. aureus</i> (Egypt-Abbasa), 0.1 M Tris-soluble muscle proteins	35
3	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Kalubia), 0.1 M Trissoluble muscle proteins	38
4	SDS-PAGE profile of <i>O. aureus</i> (Egypt-Kalubia), 0.1 M Tris- soluble muscle proteins	40
5	SDS-PAGE profile of <i>T.zillii</i> (Syria), 0.1 M Tris-soluble muscle proteins	42
6	SDS-PAGE profile of <i>O.aureus</i> (Syria), 0.1 M Tris-soluble muscle proteins.	44
7	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Abbasa), Alcoholsoluble muscle proteins	47
8	SDS-PAGE profile of <i>O. aureus</i> (Egypt-Abbasa), Alcoholsoluble muscle proteins	48
9	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Kalubia), Alcoholsoluble muscle proteins	50
10	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Kalubia), Alcoholsoluble muscle proteins	51
11	SDS-PAGE profile of <i>T.zillii</i> (Syria), Alcohol-soluble muscle proteins	52
12	SDS-PAGE profile of <i>O. aureus</i> (Syria), Alcohol-soluble muscle proteins	53

13	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Abbasa), water soluble muscle proteins	56
14	SDS-PAGE profile of <i>O. aureus</i> (Egypt-Abbasa), water soluble muscle proteins	58
15	SDS-PAGE profile of <i>T.zillii</i> (Egypt-Kalubia), water soluble muscle proteins.	60
16	SDS-PAGE profile of <i>O. aureus</i> (Egypt-Kalubia), water soluble muscle proteins	62
17	SDS-PAGE profile of <i>T.zillii</i> (Syria), water-soluble muscle proteins	65
18	SDS-PAGE profile of <i>O.aureus</i> (Syria), water-soluble muscle proteins	65
19	RAPD patterns of the four applied populations using primers A1, A 3, A 4, A 10, A 17 and A 19	73
20	RAPD patterns of the four applied populations using primers: B 8, C 12, C 13 and C 20	74
21	Dendrogram of genetic relationship among relevant populations based on DNA polymorphisms	7 9