Effect of Intramuscular Administration of Dexamethasone on Shortening of the Duration of Induction of Labor by oxytocin

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynaecology**

By

Medhat Ramadan Badawy

M.B., B.Ch
Cairo University (2008)
Resident in Mubarak Central Hospital

Under Supervision of

Dr. Tarek Aly Raafat

Assistant Professor of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Dr. Kamal Ahmed Eldessouki

Lecturer of Obstetrics and Gynaecology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2017

First thanks to Allah to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks and gratitude to Dr. Tarek Aly Raafat Assistant Professor of Obstetrics and Gynaecology for his supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Kamal Ahmed Eldessouki Tecturer of Obstetrics and Gynaecology for his sincere efforts and fruitful encouragement.

Medhat Ramadan

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Abstract	VIII
• Introduction	1
Aim of the study	4
• Review of Literature	
- Chapter I: Parturition	5
- Chapter II: Induction of Labor	34
- Chapter III: Postdate	52
- Chapter IV: Glucocorticoids and Hum	an Parturition58
Subjects & Methods	74
Results	84
Discussion	102
Summary & Conclusion	108
Recommendations	110
References	111
Arabic summary	

List of Abbreviations

11B-HSD1 : 11B-Hydroxy steroid dehydrogenase type1

ACOG : American College of Obstetricians and

Gynecologists

ACTH : Adrenocorticotrophic hormone

AFI : Amniotic fluid index

ATP : Adenosine triphosphate

BMI : Body mass index

BP : Blood pressure

BPM : Beats per minute

BPP : Biophysical profile

C/S : Cesarean Section

C-AMP : Cyclic adenosine monophosphate

CC : Cubic centimeters

COX-2 : Cyclooxygenase 2

CPLA2 : Cytosolic phospholipase A2

CRH : Corticotrophin Releasing Hormone

CRH-BP : CRH-binding protein

CSF : Colony-stimulating factor

CST : Contraction stress test

3 List of Aberrations &

Cyclic : Cyclic adenosine monophosphate

AMP

CYP17- : Cytochrome enzyme (p17-p11A)

CYP11A

DHEAS : Dehydro epiandrosterone sulfate

DZ : Definitive zone

EASI : Extra-Amniotic Saline Infusion

EDD : Expected delivery date

EFM : Electronic fetal heart rate monitoring

Eg : Example

fFN: Fetal Fibronectin

FHR : Fetal heart rate

HFA : Human fetal adrenal

HSD3B2 : 3-hydroxysteroid dehydrogenase type ll

IGFBP-1 : Insulin-Like Growth Factor Binding Protein-1

IL-8 : Interleukin-8

LMP : Last menstrual period

M2 : Meters square

M-CSF : Macrophage stimulating factor

MMps : Metallo proteinases

mRNA : Messenger Ribonucleic Acid

Tist of Aberrations &

NA : Not applicable

NO : Nitric oxide

NST : Non stress test

PGDH : 15-hydroxy prostaglandin dehydrogenase

PGE2- : Prostaglandin

PGF2

PGHS : Prostaglandin endoperoxide H synthase enzyme

PGHS-2: Prostaglandin synthesis

PGs: Prostaglandins

RCOG : Royal Colleague of Obstetrics and Gynecology

SVD : Spontaneous vaginal delivery

TNF: Tumor necrosis factor

TZ : Transitional zone

WHO : World Health Organization

List of Tables

Table No.	Title	Page No.
Table (1)	Bishop Scoring System Used for Assessment of Inducibility	19
Table (2)	Traditional Definitions of Abnormal Labor	28
Table (3)	Factors that may affect fetal oxygenation in labor.	57
Table (4)	Duration of action for Glucocorticoid analogues	61
Table (5)	Statistical comparison between the two studied groups age, BMI and gestational age on admission date	84
Table (6)	Statistical comparison between the two studied groups as regard pulse and blood pressure	86
Table (7)	Statistical comparison between the two studied groups as regard Bishop Score at time of intervention	87
Table (8)	Statistical comparison between the two studied groups as regard duration between adequate uterine contraction and active phase	88
Table (9)	Statistical comparison between the two studied groups as regards duration of active phase of labor	90

🛢 List of Tables 🗷

Table No.	Title	Page No.
Table	Statistical comparison between the two	
(10)	studied groups as regards rate of cervical	92
	dilatation	
Table	Statistical comparison between the two	
(11)	studied groups as regards duration of 2 nd	94
	stage of labor	
Table	Statistical comparison between the two	
(12)	studied groups as regards duration of 3 rd stage	96
	of labor	
Table	Statistical comparison between the two	98
(13)	studied groups as regards apgar score 5min	70
Table	Statistical comparison between the two	99
(14)	studied groups as regards apgar score 10 min	77
Table	Statistical comparison between the two	
(15)	studied groups as regards mode of delivery	100
	and its indication	

List of Figures

Figure No.	Title	Page No.
	Mataural Estal Internations	
Fig. (1)	Maternal – Fetal Interactions	9
Fig.	Mechanism of effacement, dilatation	15
(2,3,4,5)		
Fig. (6)	Mechanism of effacement and dilatation	17
	during labor	
Fig. (7)	Composite of the average dilatation curve for	26
	nulliparous labor	
Fig. (8)	Modified WHO curve	27
Fig. (9)	Algorithm for management of low risk	55
	pregnancy beyond 40w of gestation	
Fig. (10)	The placental-fetal adrenal endocrine cascade	64
Fig. (11)	Maternal and Fetal Endocrine Systems	71
	Involved in Increased Placental Production of	
	CRH	
Fig. (12)	Mean age, BMI and gestational age in	85
	dexamethasone group and control group	
Fig. (13)	Mean pulse, systolic BP and diastolic BP in	86
	dexamethasone group and control group	
Fig. (14)	Mean bishop score in dexamethasone group	87
	and control group	
Fig. (15)	Mean Duration between induction of labor and	89
	active phase (hrs) in dexamethasone group and	
	control group	

$\begin{cases} \hline \ensuremath{\mathfrak{D}} & \ensuremath{\mathsf{Tigures}} \ensuremath{\ensuremath{\varnothing}} \ensuremath{\mathsf{Tigures}} \ensuremath{\ensuremath{\varnothing}} \ensuremath{\mathsf{Tigures}} \ensuremath{\ensuremath{\varnothing}} \ensuremath{\ensuremath{\mathsf{Zigures}}} \ensuremath{\ensuremath{\ensuremath{\varnothing}}} \ensuremath{\ensuremat$

Figure No.	Title	Page No.
Fig. (16)	Mean Duration of active phase of labor (hrs)in	91
	dexamethasone group and control group	
Fig. (17)	Mean rate of cervical dilatation (cm/hr) in	93
	dexamethasone group and control group	
Fig. (18)	Mean duration of 2 nd stage of labor (minutes)	95
	in dexamethasone group and control group	
Fig. (19)	Mean duration of 3rd stage of labor (minutes)	97
	in dexamethasone group and control group	
Fig. (20)	Comparison between Group I	98
	(Dexamethazone) and Group II (Placebo) as	
	Regard APGAR Score 5 min.	
Fig. (21)	Comparison between Group I	99
	(Dexamethazone) and Group II (Placebo) as	
	Regard APGAR Score 10 min.	
Fig. (22)	Comparison between Group I	101
	(Dexamethazone) and Group II (Placebo) as	
	Regard Mode of Delivery.	

₹ Abstract €

Abstract

Aim of work: To determine the effect of

intramuscular administration of dexamethasone on the

duration of labor Induction.

Methods: seventy two pregnant women were included

in this study. (Study group and control group); each contain

thirtee six pregnant women. Study group was injected with

two ml dexamethasone and the control group was injected

with two ml distilled water six hours before labor induction

.Both groups were induced by same protocol till optimal

contractions are reached.

Conclusion: An intramuscular injection of

dexamethasone was found to shorten the duration of labor

induction. Also it is found to shorten the duration of active

phase and second stage of labor.

r*r* 1

Key words: induction, labor, dexamethasone

VIII

Introduction

Induction of labour is a common obstetric procedure which is performed for a variety of medical and non medical indications (*Schwarz et al.*, 2016).

If the cervix is unfavourable, prior ripening of the cervix makes induction of labour easier and more succeful. There are different methods for ripening of the cervix and making it ready for induction. These methods include medical methods such as the administration prostaglandins (Van Gemund et al., 2004), and mechanical methods amniotic saline such as extra infusion (EASI), traction on the cervix with Foley catheter and laminaria(Karjane et al., 2006). One of the methods proposed for the speeding up of the labor process (labor induction) is use of corticosteroids (Karjane et al., 2006).

Although the effects of using these substances in the labor process is not well – understood, studies conducted on animals indicate the importance of the secretion of cortisol by adrenal glands in sheep fetuses and in fetuses of other animals on starting labor (*Sharami et al.*, 2005). It has been observed that infusion of glucocorticoids into sheep fetuses causes premature birth induction (*Batista et*

al., 2011). These studies have prepared the way for bringing up the role of corticosteroids in the speeding up of labor induction in women. In studies carried out, corticosteroids have been employed using extra-amniotic and intravenous methods and in some of these studies, both methods have proved successful (Levy et al. ,2002). Corticosteroids have been suggested for assisting in the ripening of the cervix (Ziaei et al., 2003). As the presence of the receptors for glucocorticoids on the amniotic membrane at the begining of labor enhances the hypothesis that they probably have a role in the initiation of labor (Kavanagh et al., 2006). The process of childbirth starts from the axis of the hypothalamus, the pituitary gland, and the adrenal glands. Steroid substances produced in the adrenal glands of the human fetus affect the placenta and the membranes and transform the myometrium from the static to the contractile state (Hoffman et al., 2012). In various studies, researchers have shown that as in sheep, the production of cortisol in the adrenal glands of human fetus affects the fetus and the membranes through increasing placental CRH production (through a feed forward cascade) which causes the myometrium to transform from the static to the contractile state. In addition , cortisol has been proposed to affect the myometrium indirectly by stimulating the membranes to increase prostaglandin synthesis. furthermore, It has been revealed that the CRH derived from the placenta is an important factor in increasing maternal estrogens (especially esteriol) in the final stages of pregnancy. The resulting increase in estrogen brings about a change in the ratio of estrogen to progesterone, which promote the expression of a series of contractile proteins in the myometrium, leading to a loss of myometrial quiescence (*Hoffman et al.*, *2012*).

Aim of the Work

The aim of this work is to evaluate the effect of intramuscular administration of dexamethasone on the duration of vaginal delivery in women undergoing induction of labor.

Research hypothesis

In women undergoing induction of labour,IM dexamethasone may decrease the duration of labour

Research question

In women undergoing induction of labour, Does IM dexamethasone decrease the duration of labour?