Pharmacological study of potential effect of chrysin in doxorubicin-induced cadiotoxicity in rats

Thesis presented by

Eman Mohamed Mohamed Mantawy

M.Sc., Ain Shams university (2012) Assistant Lecturer of Pharmacology and Toxicology, Faculty of pharmacy, Ain Shams University.

Submitted for partial fulfillment of PhD degree in Pharmaceutical Sciences to Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Under the supervision of

Dr. Ebtehal El-Demerdash Zaki

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

Dr. Wesam Mostafa El-Bakly

Lecturer of Pharmacology, Faculty of medicine, Ain Shams University

Dr. Ahmed Esmat Abd el Razik

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

> Faculty of Pharmacy Ain Shams University (2014)

حراسة فارماكولوجية للتأثير المحتمل لمركب كريسن في تسمو القلب المحدد بحواء الدوكسوروبسين في الجرذان

رسالة مقدمة من الصيدلانية

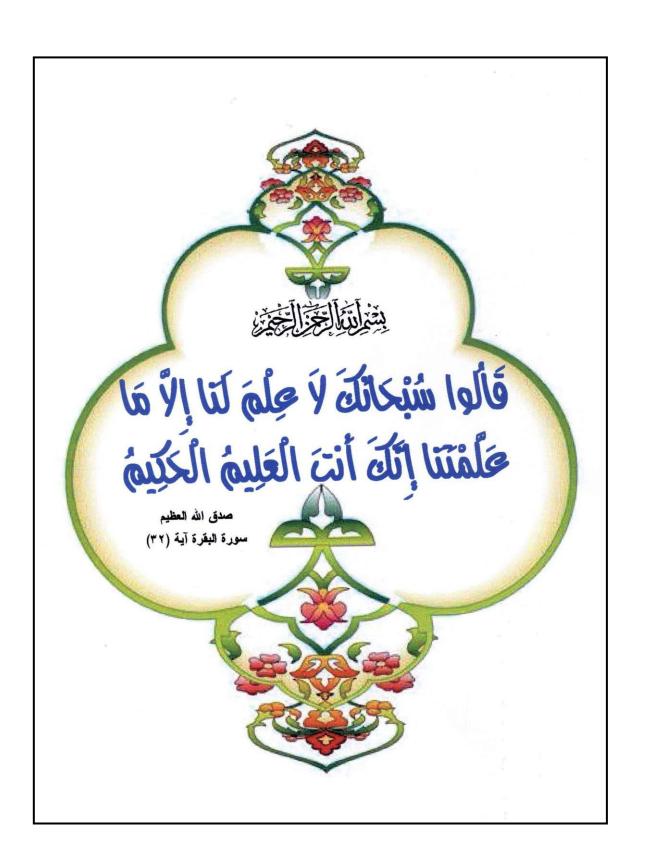
إيمان محمد محمد منطاوى

ماجستير علوم صيدلية . جامعة عين شمس (2012) مدرس مساعد بقسم الأدوية والسموم . كلية الصيدلة . جامعة عين شمس

للحصول علي درجة الدكتوراة في العلوم الصيدلية (علم الأدوية والسموم)

تحت إشراف أ.د/ إبتهال الدمرداش زكى

أستاذ علم الأدوية والسموم قسم الأدوية والسموم . كلية الصيدلة . جامعة عين شمس


د/ وسام مصطفى البقلى

مدرس بقسم الفارماكولوجيا، كلية الطب ، جامعة عين شمس

د/ أحمد عصمت عبد الرازق

مدرس علم الأدوية والسموم بقسم الادوية والسموم، كلية الصيدلة ، جامعة عين شمس

كلية الصيدلة. جامعة عين شمس (2014)

<u>Acknowledgements</u>

No words can be ever said expressing my deep thanks to ALLAH.

Most heartfelt thanks are due to **Dr. Ebtehal El Demerdash**, Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, who has made this work possible by her great effort, continuous guidance, support and indispensable help in practical work and thesis writing. In fact, she was more than a supervisor, she never stopped supporting and encouraging me. Her precious advices were always pushing me forward.

I am greatly thankful to **Dr. Ahmed Esmat**, Lecturer of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University. I am deeply grateful for his continuous support, guidance as well as tremendous effort and indispensable help in the practical work and thesis writing.

I wish to express my appreciation and gratitude to **Dr. Wesam El Bakly**, Lecturer of Pharmacology, Department of Pharmacology, Faculty of Medicine, Ain Shams University, for her guidance, kind cooperation and discussion throughout the work.

I would like to thank MSc Pharmacist. Reham Soliman Assistant lecturer, National center for radiation research and technology, Dr. Amal Kamal, lecturer of Pharmacology and Toxicology, MSc Pharmacists; Randa Breika and Reem Tarek Assistant lecturers of Pharmacology and Toxicology, and Sherif Shoieb, Demonstrator of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for their continuous help in the practical work.

It is my great pleasure to thank all members of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University and every person in my Faculty who supported me and helped me in my way.

Finally, but of great importance, I wish to express my deep gratefulness and thanks to my family; my father, my mother and my brothers, for their support and continuous prayers and for all what they endured to tolerate and uphold me in finshing this thesis.

Eman Mohamed Mantawy

the Doxorubicin (DOX)is one of most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. Chrysin, a natural flavone, possesses multiple biological activities, such as antioxidant, antiinflammatory and anti-cancer. The current study was divided into two parts. The first part aimed to screen the cardioprotective dose of chrysin where male albino rats received chrysin once daily for 12 consecutive days at doses of 25 and 50 mg/kg orally followed by a single dose of DOX (15 mg/kg; i.p.) on day 12. DOX induced significant myocardial damage in rats, which was characterized by conduction abnormalities, decreased heart-to-body weight ratio, increased serum CK-MB and LDH and myofibrillar disarrangement. These effects were almost prevented by pretreatment with chrysin at dose of 50 mg/kg which was further used in the second part of the study that aimed to elucidate the possible underlying molecular mechanisms of the potential cardioprotective effect of chrysin. Male albino rats were treated with either DOX (5 mg/kg, i.p., once a week) and/or chrysin (50 mg/kg, orally, four times a week) for four weeks. As indicators of oxidative stress, DOX caused significant GSH depletion, lipid peroxidation and reduction in activities of antioxidant enzymes; CAT, SOD, Gpx and GR. Co-treatment with chrysin significantly attenuated DOX-induced oxidative injury in cardiac tissue. Furthermore, DOX induced apoptotic tissue damage by increasing the expression of p53, Bax, Puma and Noxa and caspase-3 activity while decreasing the expression of Bcl-2. Chrysin co-treatment ameliorated these apoptotic actions of DOX. Moreover, DOX induced activation of MAPK; p38 and JNK and increased the expression of NF- κ B which further promote the DOX-induced apoptotic cell death. Meanwhile, DOX decreased the activation of AKT survival pathway via increasing the gene expression of its inhibitory enzyme; PTEN. On the contrary, chrysin co-treatment effectively neutralised all these effects. Collectively, these findings indicate that chrysin possesses a potent protective effect against DOX-induced cardiotoxicity via suppressing oxidative stress and apoptotic tissue damage.

Keywords: Cardiotoxicity; Doxorubicin; Chrysin; Oxidative stress; Apoptosis

<u>List of Contents</u>

Subject	Page NO.
1- List of abbreviations	i
2- List of tables	vi
3- List of figures	viii
4- Introduction	1
- Doxorubicin	1
- Discovery and history	1
- Chemistry	2
- Pharmacodynamics	4
- Pharmacokinetics	9
- Toxicity	12
- Cardiotoxicity	16
- Types of cardiotoxicity	16
- Risk factors	18
- Mechanism of cardiotoxicity	21

List of Contents (Cont'd)

Subject	Page NO.
- Cardioprotective strategies	35
- Chrysin	38
-Source	38
- Chemistry	38
- Pharmacodynamics	39
- Pharmacokinetics	54
5- Aim of the work	55
6- Materials and Methods	56
7-Results	124
8- Discussion	187
9- Summary and Conclusions	203
10- References	212
11- Arabic summary	

List of Abbreviations

4-AAP	4- Aminoantipyrine.
AIF	Apoptosis inducing factor
Apaf-1	Apoptosis protease activation factor-1
ATP	Adenosine triphosphate
BAD	Bcl-2-associated death promoter
Bak	Bcl-2 homologous antagonist/killer
Bax	Bcl-2 associated X protein
BCA	Bicinchoninic acid
Bcl-2	B-cell lymphoma 2
Bcl-xl	B-cell lymphoma-extra large
BDZ	Benzodiazepines
BID	BH3 interacting-domain death agonist
BSA	Bovine serum albumin
CAT	Catalase
CD4	Cluster of differentiation 4
С/ЕВР δ	CCAAT/enhancer binding protein δ
cAMP	Cyclic adenosine monophosphate
cDNA	Complementary DNA

cGMP	Cyclic guanosine 3',5'- monophosphate
CHF	Congestive geart failure
CK-MB	Creatine kinase MB
COX-2	Cyclooxygenase- 2
Ct	Cycle threshold
DCHBS	3,5-dichloro -2-hydroxybenzene sulfonic acid 4-aminophenazone 4-AAP
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DOX	Doxorubicin
dsDNA	Double stranded DNA
DSS	Dextrane sodium sulfate
DTNB	5,5'-dithio-bis (2-nitrobenzoic acid)
DTT	Dithiothreitol
DW	Distilled water
ECG	Electrocardiography
ECL	Enhanced luminol based chemiluminescent
EDTA	Ethylene-diamine tetraacytic acid
EndoG	Endonuclease G
ERK	Extracellular signal-regulated kinase

FLIP	FLICE/caspase-8 inhibitory protein
Fp	Flavoprotein;
G ₆ PDH	Glucose-6-phosphate dehydrogenase
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GPx	Glutathione peroxidase
GR	Glutathione reductase
GSH	Reduced glutathione
GSSG	Oxidized glutathione
H ₂ O ₂	Hydrogen peroxide
HK	Hexokinase
HRP	Horseradish peroxidase
IFN-γ	Interferon-γ
IGF-1	Insulin-like growth factor-1
ΙκΒ	Inhibitor of kappa B
IKK	IκB kinase
IL	Interlukin
iNOS	Inducible nitric oxide synthase
IP	Intrapeitoneal
IV	Intravenous

JNK	c-Jun N-terminal kinase
LDH	Lactate dehydrogenase
LPS	Liopopolysaccahride
MAPK	Mitogen-activated protein kinase
Mcl-1	Myeloid leukemia cell differentiation protein
MDA	Malondialdehyde
mRNA	Messenger RNA
NAD	Nicotinamide adenine dinucleotide
NADP	Nicotinamide adenine dinucleotide phosphate
NBT	Nitroblue tetrazolium
NF-ĸB	Nuclear factor kappa B
NO	Nitric oxide
O ²⁻	Superoxide anion
PG	Prostaglandin
PI3K	Phosphoinositide kinase
PMS	Phenazine methosulphate
pNA	p-nitroaniline
PTEN	Phosphatase and tensin homolog

Puma	P53 upregulated modulator of apoptosis
PVDF	Polyvinyl difluoride
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RQ	Relative quantitation
RT-PCR	Real time polymerase chain reaction
SDS	Sodium dodecyl sulfate
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel
	electrophoresis
SOD	Superoxide dismutase
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive substances
TBS	Tris-buffered saline
TBST	Tris-buffered saline with tween
TCA	Trichloroacetic acid
TEMED	Tetramethylethylenediamine
Th	T-helper type
TNF-α	Tumor necrosis factor-alpha
TRAIL	TNF-related apoptosis-inducing ligand

List of Tables

Table No.	Table title	Page No.
1	Reaction scheme for 96 Well Plate Microassay Method	94
2	Sequence of primers used in RT-PCR	107
3	Effective range of separation of SDS-polyacrylamide gels	112
4	Solutions for preparing resolving and stacking gels for trisglycine SDS-polyacrylamide gel electrophoresis	112
5	Effect of chrysin on ECG parameters in rats subjected to acute doxorubicin (DOX) intoxication.	126
6	Effect of chrysin on body and heart weight and cardiotoxicitymarkers in rats subjected to acute doxorubicin (DOX) intoxication.	130
7	Effect of chrysin on ECG parameters in rats subjected to chronic doxorubicin (DOX) intoxication.	138