

Science and Education
Ain Shams University

Electronic Structure and Magnetic Properties of Rare Earth Transition Metal (RT₅ Compounds)

By

Basma Mohamed Osama El Assy

Ass. Lect., Physics Department, Faculty of Women, Ain Shams University

A thesis submitted in conformity with the requirement for

Degree of Doctor of Philosophy in Science

(Solid State Physics)

Supervisors

Prof. Dr. Amira Zaki Dakrouri

Prof. of Solid State Physics, Phys. Dept., Faculty of Women for Arts, Science, and Education, Ain Shams University

Prof. Dr. Samy Hashem Aly

Prof. of Theoretical Physics Phys. Dept., Faculty of Science, Damietta University

Prof. Dr. Mohamed Sherif Yehia

Prof. of Theoretical Physics Phys. Dept., Faculty of Science, Helwan University

Faculty of Women for Arts, Science and Education **Ain Shams University**

	Appro	val She	et		
Student Name:	Basma Moh Ass. Lect., Physic University			-	n, Ain Shams
Thesis Title:	Electronic St		_		•
	Rare Earth T Submitted in the Solid State Phys	e Partial Fulfillm	•	•	• •
Supervisors Cor	nmittee			Signat	ture
Prof. Dr. Amira Za Prof. of Solid State Phys Phys. Dept., Faculty of V Arts, Science, and Educa Ain Shams University Prof. Dr. Samy Ha Prof. of Theoretical Phy Faculty of Science, Dam	sics, Women for ation, shem Aly sics, Phys. Dept., nietta University ed Sherif Yehia				
Prof. of Theoretical Phy Faculty of Science, Helv					
Approval Stamp		Approval D	ate:	/	/
Faculty Council Ap	proval	University	Counc	il Appro	oval
Date: / /	/	Date:	/	/	

Dedicated To

My Husband & Sons

Acknowledgement

First and foremost I am kneeling obsequiousness to **ALLAH** thanking **HIM** for showing me the right way. Without **God** help, my efforts would have gone astray. It was through the grace of **God** that I was able to acquire this accomplishment.

Great thanks for **Head of Physics Department** for his help and continuous encouragement for me and all young scientists in our department.

I wish to express my deepest sincerest thanks to **Prof. Dr.Amira Zaki, Prof. Dr. Samy Hashem** and **Prof. Dr. Mohamed Sherif** who were more helpful and understanding, and for their encouragement, support, capable supervision, fruitful guidance, encouragement, endless help and many illuminating discussions through the course of the investigation.

I would also like to extend a special gratitude and sincerest thanks to **my dear husband**. I am deeply indebted to him for his enormous patience, and support. He has been the driving force for me through the work, I am deeply indebted to him for his endless help. A very special thanks to **my lovely sons** for their patience and endurance during this work.

Finally, but in no way the least important, I would like to thank my father, mother and my family who provided me unconditional moral support and friends, especially my best friend Amira, for their support, encouragement, and understanding throughout my Ph.D's research and for all the good and bad times we had together.

Table of Contents

Ta	able of Contents				
Li	ist of Figures IV				
Li	st of 1	Гabl	es	X	
Α	bstrac	ct		X	
1	СНА	APTER 1: Introduction3			
	1.1	Bri	ef History	3	
	1.2	The	e Rare Earth Metals	5	
	1.3	The	e Transition Metals	7	
	1.4	The	e Rare Earth Transition Metal Compounds (RE-TM)	8	
	1.5	Ma	agnetism	9	
	1.6	Ma	agnetization in Maxwell's Equations	10	
	1.7	Orl	bital Angular Momentum	12	
	1.8	Spi	in Moment	14	
	1.9	Cla	asses of Magnetic Materials	15	
	1.9	9.1	Diamagnetism	16	
	1.9	9.2	Paramagnetism	17	
	1.9	9.3	Ferromagnetism	18	
	1.9	9.4	Ferrimagnetism	22	
	1.9	9.5	Antiferromagnetism	23	
	1.10	N	Magnetic Anisotropy	25	
	1.1	0.1	Magnetocrystalline Anisotropy	25	

		Magnetic Interactions in Rare Earth Transition Meta nds 27	3
	1.12	Density of States31	
	1.13 E	nergy Bands in Solids31	
	1.13.1	Free Electron Model31	
	1.13.2	Nearly Free Electron Model33	
	1.13.3	Tight-Binding Approximation33	
2	CHAPTER	R 2: Theory and Computational Methods37	
	2.1 Ele	mentary Quantum Mechanics37	
	2.1.1	Introduction37	
	2.1.2	The Schrödinger Equation38	
	2.1.3	The Born-Oppenheimer (BO) Approximation40	
	2.1.4	The Variational Principle for Ground State42	
	2.1.5	The Hartree–Fock Approximation (HF)43	
	2.2 De	nsity Functional Theory (DFT)47	
	2.2.1 model	Early Density Functional Theories: The Thomas-Ferm	า
	2.2.2	The Hohenberg-Kohn theorems50	
	2.2.2.	1 The First Hohenberg-Kohn Theorem: Proof of Existence51	
	2.2.2.2	2 The Second Hohenberg-Kohn Theorem: Variational Principle 54	
	2.2.3	The Kohn-Sham Equations57	
	2.2.4	The Exchange-Correlation Functionals64	
		1 Local Density Approximation (LDA)64	
		2 Generalized Gradient Approximation (GGA)68	
	2.2.5	Solving Equations70	
	2.3 The	e Solving Codes	

	2.3	3.1	WIEN2k	72
	2.3	3.2	Mathematica	73
3	СНА	PTER	3: Results and Discussions	77
	3.1	YCo) ₅	82
	3.2	Gd0	Co ₅	97
	3.3	Smo	Co ₅ 1	11
	3.4	Smo	Co ₄ B12	25
C	onclu	sion		147
R	efere	nces		149

List of Figures

Figure 1.1 Rare earth and transition elements in the periodic table 7
Figure 1.2 Current Loop
Figure 1.3 Electron moving with velocity (v) in a circular Bohr orbit of radius (r)
Figure 1.4 The two possible spins of the electron
Figure 1.5 Magnetization and susceptibility in Diamagnetic materials
Figure 1.6 Magnetization and susceptibility in diamagnetic materials
Figure 1.7 Parallel alignment of moments in Ferromagnetic materials
Figure 1.8 The relation between magnetic field and magnetization in ferromagnetic materials
Figure 1.9 The relation between temperature and magnetization in magnetite
Figure 1.10 Magnetic spins in Ferrimagnetic materials
Figure 1.11 Magnetic spins in Antiferromagnetic materials 23
Figure 1.12 The relation between temperature and susceptibility in Antiferromagnetism24
Figure 1.13 Canted Antiferromagnetism
Figure 1.14 Magnetization curves for magnetite (Fe_3O_4)
Figure 2.1 Interactions between particles, the many-body problem 38

Figure 2.2 A cartoon representing the relationship between the "real" many-body system (left hand side) and the non-interacting system of Kohn-Sham Density-Functional Theory (right hand side) . 59
Figure 3.1 CaCu ₅ -type structure [99]
Figure 3.2 CeCo ₄ B-type structure [99]81
Figure 3.3 The magnetization curves of YCo $_5$ along and perpendicular to the c-axis at 300 K83
Figure 3.4 The probability landscape of YCo $_5$ at T=300 K and H=60 kOe applied along the c-axis84
Figure 3.5 The probability landscape of YCo ₅ at T=300 K and H=150 kOe applied perpendicular to the c-axis
Figure 3.6 Dependence of the total energy on the c/a ratio
Figure 3.7 Total spin-polarized DOS (up + down) for the whole YCo5, Y (1a), Co (2c), and Co (3g)88
Figure 3.8 The spin-polarized DOS (up + down) for Y (Total, f-state and d-state), Co (2c- Total and d-state), and Co (3g – Total and d-state)
Figure 3.9 The total spin-orbit DOS (up + down) in [001] direction for the whole YCo5, Y (1a), Co (2c) and Co (3g)90
Figure 3.10 The total spin-orbit DOS (up + down) in [001] direction for Y (1a – Total and d-state), Co (2c – Total and d-state) and Co (3g – Total and d-state)
Figure 3.11 The total band (up & down) with characterized d-state(thick lines) for Y (1a) without SO-interaction
Figure 3.12 The total band (up & down) with characterized d-state (thick lines) for Y (1a) without SO-interaction94

Figure 3.13 The total band (up & down) with characterized d-state (thick lines) for Y (1a) with SO-interaction95
Figure 3.14 The total band with characterized d-state (thick lines) for Y (1a) with SO-interaction96
Figure 3.15 The magnetization curves of $GdCo_5$ along and perpendicular to the c-axis at 300 K97
Figure 3.16 The probability landscape of GdCo ₅ at T=300 K and H=220 kOe applied along the c-axis98
Figure 3.17 The probability landscape of $GdCo_5$ at $T=300$ K and $H=500$ kOe applied perpendicular to the c-axis
Figure 3.18 Dependence of total energy on the (c/a) ratio99
Figure 3.19 Total spin-polarized DOS (up + down) for the whole GdCo ₅ , Gd (1a), Co (2c), and Co (3g)
Figure 3.20 The spin-polarized DOS (up + down) for Gd (Total and f-state), Co (2c-Total and d-state), and Co (3g – Total and d-state) 103
Figure 3.21 The total spin-orbit DOS (up + down) in [001] direction for the whole GdCo ₅ , Gd (1a), Co (2c) and Co (3g)
Figure 3.22 The total spin-orbit DOS (up + down) in [001] direction for Gd (1a – Total and d-state), Co (2c – Total and d-state) and Co (3g – Total and d-state)
Figure 3.23 The total band (up & down) with characterized f-state (thick lines) for Gd (1a) without SO-interaction
Figure 3.24 The total band (up & down) with characterized f-state (thick lines) for Gd (1a) without SO-interaction
Figure 3.25 The total band (up & down) with characterized f-state (thick lines) for Gd (1a) with SO-interaction

Figure 3.26 The total band with characterized f-state (thick lines) for Gd (1a) with SO-interaction
Figure 3.27 The magnetization curves of SmCo ₅ along and perpendicular to the c-axis at 300 K
Figure 3.28 The probability landscape of SmCo ₅ at T=300 K and zero field
Figure 3.29 The probability landscape of SmCo ₅ at T=300 K and H=400 kOe applied perpendicular to the c-axis
Figure 3.30 Dependence of total energy on (c/a) ratio
Figure 3.31 Total spin-polarized DOS (up + down) for the whole SmCo ₅ , Sm (1a), Co (2c), and Co (3g)
Figure 3.32 The spin-polarized DOS (up + down) for Sm (Total and f-state), Co (2c-Total and d-state), and Co (3g – Total and d-state) 117
Figure 3.33 The total spin-orbit DOS (up + down) in [001] direction for the whole SmCo ₅ , Sm (1a), Co (2c) and Co (3g)
Figure 3.34 The total spin-orbit DOS (up + down) in [001] direction for Sm (1a – Total and d-state), Co (2c – Total and d-state) and Co (3g – Total and d-state)
Figure 3.35 The total band (up & down) with characterized f-state (thick lines) for Sm (1a) without SO-interaction
Figure 3.36 The total band (up & down) with characterized f-state (thick lines) for Sm (1a) without SO-interaction
Figure 3.37 The total band (up & down) with characterized f-state (thick lines) for Sm (1a) with SO-interaction
Figure 3.38 The total band (up & down) with characterized f-state (thick lines) for Sm (1a) with SQ-interaction