

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ENGINEERING PHYSICS AND MATHEMATICS DEPARTMENT

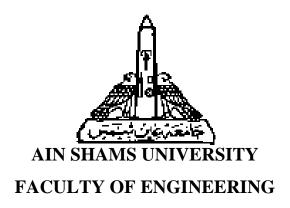
Electro-Thermal Analysis for Carbon Nanotube Transistors

A thesis Submitted in Partial Fulfillment of the Requirements of the

Degree of Master in Engineering Physics

By Walid Soliman Selmy Mohammed

Supervised by:


Prof. Dr. Salah Gamal

Ain Shams University

Dr. Mohammed Elbanna

Ain Shams University

Cairo, 2013

Electro-Thermal Analysis for Carbon Nanotube Transistors

By WalidSolimanSelmyMohammed

Examiners Committee

Name	Signature
Prof: Lotfy Ibrahim Abo Salem	•••••
Prof: Omar Abdel Halim Omar	••••••
Prof: Salah El din Hassan Gamal	•••••
	Date://

Summary

In the first part of this work, single-wall carbon nanotubes (SWCNTs) are cylinders formed by a sheet of hexagonally arranged carbon atoms (graphene) wrapped into a nanometer-diameter tube. These molecular wires have attracted considerable scientific and engineering interest due to their outstanding electrical and thermal transport properties for this tube. Depending on their wrapping (chiral) angle, SWCNTs exhibit either semiconducting or metallic behavior. Within integrated circuits, semiconducting SWCNTs can be used for transistor device applications, while metallic SWCNTs have been proposed as advanced interconnects. Compared to typical copper interconnects, SWCNTs can carry up to two orders of magnitude higher current densities (~ 10⁹ A/cm²), The thermal conductivity of nanotubes exceeds that of copper by a factor of 15 and is insensitive to electromigration.

In the second part of this work, we analyze transport in metallic single-wall carbon nanotubes (SWCNTs) interconnect over the bias range up to electrical breakdown in air. To account for Joule self-heating, a temperature-dependent Landauer model for electrical transport is coupled with the heat conduction equation along the nanotube. We examine the phonon scattering mechanisms limiting electron transport, and find the strong temperature dependence of the optical phonon absorption rate to have a remarkable influence on the electrical resistance of micron-length nanotubes. For interconnect applications of metallic SWNTs, significant self-heating may be avoided if power densities are limited below 5 $\mu W/\mu m$.

The thesis contains three chapters, conclusion, references list and is organized as given below.

Chapter 1

This chapter gives a background on the structure of carbon nanotubes and its advantages, the electrical properties of metallic single-wall and multiwall nanotubes. A SWCNT can be metallic and semiconducting, dependent on its chirality.

Chapter 2

In this chapter, the electrical and thermal transport in metallic single wall carbon nanotubes interconnect under a wide range of temperature and bias conditions, and comparison of our analysis with previous work are presented.

Chapter 3

The result of our work after its comparison with previous work is presented. The results of comparison show an error between them especially in the low length and high bias.

Finally, the results and discussion of our work after its comparison with pervious work is presented.

Abstract

A carbon nanotube (CNT) that is one possible material that may replace copper interconnects in the near future. As such, it is necessary to develop a method for analyzing their capabilities. A successful model would have the ability to identify potential shortcomings and advantages of CNTs as compared to current interconnect technology. Interconnect was developed to test CNTs of various lengths under an applied variable voltage.

The electro-thermal effects have an important role in the study of metallic Single-Wall Carbon Nanotubes (SWCNTs) for interconnect applications. Experimental data and careful modeling reveal that self-heating is considerably significant in short nanotubes $(1 < L < 15\mu\text{m})$ under high-bias. The low-bias resistance of micron scale SWCNTs is also found to be affected by optical phonon absorption (a scattering mechanism previously neglected) above 250 K. In this work, we explore the effect of the thermo-electric current (I_{hc}) caused by the temperature difference along the SWCNTs interconnects (thermo-electric properties). The thermo-electric current effect is studied at different lengths of SWCNTs and at different biases. Also the change in length has an important role in the value of the breakdown voltage (the breakdown voltage increased as the length of the carbon nanotube interconnects increased).

Acknowledgment

I would like to thank my Allah who shows me the way and makes me able to finish this work (**Thanks my Allah**).

The help of many people achieved the completeness of this work. First, I would like to thank my supervisor **Prof. Salah H. Gamal** for his help, assistance, and encouragement during the years. No words are sufficient to express my deep gratitude toward my supervisor **Dr. mohammed elbanna** who gives me a lot of time and helpful advices and materials over the years. He was not only my supervisor but also an example I think I will never be in his level.

Many thanks to **Prof. tarik mohammed abdoelkader** for his helpful discussions and tutorials. These discussions push the work forward.

I would like to express my heartfelt thanks to my beloved my father, my mother and my brother for her blessings, my wife for her help and my sons wishes for the successful completion of this work.

Contents

Acknowledgment	i
List of Publications	ii
Summary	iii
Abstract	v
Contents	vi
List of Figures	vii
List of Tables	X
List of Symbols	хi
List of Abbreviations	xii
Chapter 1. Introduction to carbon nanotube	1
1.1 Physics of carbon nanotubes	2
1.2 Types of carbon nanotubes	3
1.3 Advantages of CNTs	6
1.4 Carbon Nanotube Interconnects	7
1.5 Band Structure of Carbon Nanotubes	8
1.5.1 Band structure of Graphene	8
1.5.2 Nanotube Crystal Structure	11
1.6 Metallic Nanotubes	15
1.6.1 Electrical properties of metallic tubes	15
1.6.2 Electronic Properties of Metallic Nanotubes	17
1.6.3 Current saturation	20
1.7 Electronic Properties of Semiconducting Nanotubes	22
1.8 Quantum Transport in a 1-D System	22
1.8.1 Schottky Barriers at the Nanotube - Metal Interface	23
1.8.2 Electronic Mean Free Path and Phase Coherence Length	23
1.9 Phonon Transport	24
1.9.1 Phonon Transport in Bulk Materials	24
1.9.2 Phonon Transport in Nanotubes	26
1.10 scattering	27
1.10.1 Phonon Scattering	28
1.10.2 Electron Scattering.	28
1.11 Density of States, Resistance and Resistivity	29
1.12 Thermal conductivity and Thermal Conductance	31

1.12.1 Thermal conductivity	31
1.12.2 Thermal Conductance	32
1.13 Summary	33
Chapter 2. Electro-Thermal Analysis for Carbon Nanotube Interconnects	35
2.1 Survey	35
2.2 Mean free path	38
2.3 Electrical Transport	41
2.4 Thermal Transport	42
2.5 Current-voltage characteristics	44
2.6 Heat Transport Properties	47
2.7 Thermoelectric properties	49
2.7.1 The Thermoelectric Effect	49
2.7.2 Theory of the Thermoelectric Effect	50
2.7.3 Number of modes	51
2.8 Electrothermal analysis	52
2.9 Novel Electro-Thermal Transport Model	52
2.10 The effect of changing T_0 in the temperature profile along the SWCNT	55
Chapter 3. Results and Discussion	56
Conclusion	67
References	69
A rabic abstract	74

List of Abbreviation

Cu copper

SWCNT single wall carbon nanotube

MWCNT multi wall carbon nanotube

1 D one dimensional

2 D two dimensional

GNR graphene

T translational vector

OP optical phonon

AC acoustic

DOS density of state

MFP mean free path

List of Figures

Fig. 1.1: Single and multiwall carbon nanotubes	4
Fig. 1.2: Chart Showing Various Kinds of Carbon Nanotubes	4
Fig. 1.3: Classification of Single Walled Carbon Nanotube (a) armchair (b)	
zigzag and (c) chiral nanotube	5
Fig. 1.4: (a) Structure of a single layer of graphite (graphene), (b) single - walled	
carbon nanotube and (c) multi – walled Carbon nanotube with three shells	8
Fig. 1.5: Structure of graphene in real and reciprocal space	9
Fig. 1.6: Graphene energy dispersion	10
Fig. 1.7: Nanotube crystal structure	12
Fig. 1.8: Graphene layer with atoms labeled using (n, m) notation. Unit vectors	
of the 2D lattice	13
Fig. 1.9: Differential conductance dI / dV of a metallic SWCNT as a function of	
V, at different temperatures. The conductance at low V approaches the values for	
a ballistic SWCNT, $4e^2$ =h. At higher V, the conductance drops dramatically due	
to optic and zone-boundary phonon scattering	16
Fig. 1.10: SWCNT current and resistance (inset) versus applied bias V	20
Fig. 2.1: the effect of optical phonon absorption	40
Fig. 2.2: Schematic of two-terminal SWCNTs device	41
Fig. 2.3: Current-voltage model of a metallic SWCNT with $L = 2$, 15μ m and	
$d = 2.4 \text{ nm}$ in ambient $T_0 = 100, 200$ and 300 K	42
Fig. 2.4: Estimated temperature profiles along the SWCNTs when self-heating	
are included. The profiles are computed at $V = 1,2,3,4$ and 5 V from bottom to	
top. The thermal healing length along the tube is $L_H \approx 0.2 \ \mu \text{m}$	44
Fig. 2.5: The temperature profile at biases of 3, 6, 9, 12 and 15 V from bottom to	
top	45

Fig. 2.6: Measured electrical I-V characteristics up to breakdown for a 3 μm long	
metallic SWCNT	46
Fig. 2.7: low energy phonon band structure of nanotubes	48
Fig. 3.1: Estimated temperature profiles along the SWCNTs at length of 2 μ m	58
Fig. 3.2: Estimated temperature profiles along the SWCNTs at length of 5 μ m	59
Fig. 3.3: Estimated temperature profiles along the SWCNTs at length of 15 μ m	59
Fig. 3.4: Estimated temperature profiles along the SWCNTs at low length	61
Fig. 3.5: Estimated temperature profiles along the SWCNTs at high length	61
Fig. 3.6: Estimated temperature profiles along the SWCNTs at different T ₀	62
Fig. 3.7: Current-voltage model of a metallic SWCNT with $L=2$, 15 μm and	
$d = 2.4 \text{ nm}$ in ambient $T_0 = 100, 200$ and 300 K	63
Fig. 3.8: Estimated temperature profiles along the SWCNTs at length of 2 μ m	64
and breakdown temperature of 873 K	04
Fig. 3.9: Estimated temperature profiles along the SWCNTs at length of 5 μ m	65
and breakdown temperature of 873 K	U.J
Fig. 3.10: Estimated temperature profiles along the SWCNTs at length of 15 μ m	66
and breakdown temperature of 873 K.	OC

List of Publications

[1] Walid Soliman, Tarek M. Abdolkader, Mohammed M. El-Banna and Salah H. Gamal, "A Novel Electro-Thermal Model for Carbon Nanotube Interconnects", J. Am. Sci. 9(4):511-518, (2013).

List of Symbols

J current density

a₁ and a₂ unit vectors in real space

a lattice constant

b₁ and b₂ the unit vectors in reciprocal space

 a_{c_c} carbon-carbon bond length

E energy dispersion

 C_h chiral vector Θ chiral angle

d_t diameter of carbon nanotube

 $N(E_F)$ the density of states per unit length

V_f Fermi velocity h Planck constant

E_g energy gap

G thermal conductance

 $\begin{array}{cc} L & \text{channel lengths} \\ Lm & \text{Mean Free Path} \\ V_g & \text{group velocity} \end{array}$

 k_{B} Boltzmann constant

T the temperature

 λ_{eff} effective electron mean free path

V_f electron Fermi velocity

 λ_{AC} elastic scattering mean free path $\lambda_{AC,300}$ AC scattering length at 300 K N_{OP} The OP occupation number

I current V voltage

 $\lambda_{OP,abs}$ the OP absorption length

 $\lambda_{OP,300}$ the spontaneous OP emission length at 300 K

 $\lambda_{OP.ems}$ optical phonon emission mean free path

 R_C the electrical contact e the electronic charge

g heat loss coefficient from the tube into the substrate

T_{BD} breakdown temperature

 $\begin{array}{ll} A & cross-sectional \ area \\ b & thickness \ of \ the \ tube \\ K_{th} & thermal \ conductivity \end{array}$

P Joule heating rate per unit length

T(x) temperature profile T_o ambient temperature

L_H characteristic thermal healing length

σ electrical conductivity

S thermopower

N the total number of acoustic modes

 ΔT the temperature difference along the nanotube

α The differential Seebeck coefficient

 π peltier coefficient

τ Thomson Coefficient

 W_{hc} The thermo-electric current

List of Tables

Table	1.1:	The	properties	of	carbon	nanomaterials	relevant	to	VLSI	
interco	nnect	ts and	passives		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	• • • •		3
Table	3.1 at	lengtl	$n L = 2 \mu m$.	• • • •						60
Table	3.2 at	lengtl	$n L = 5 \mu m.$	• • • •	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		••••	60
Table	3.3 at	lengtl	$nL = 15 \mu m$	1						60