Pituitary Hormonal Changes In Pediatric Brain Tumor

THESIS

Submitted for Partial Fulfillment of Master Degree (M.Sc) in Pediatrics

BY

EHAB MOHAMED HAMDY

(M.B., B.CH.)
Faculty of Medicine-Cairo University.

Supervisors

Prof.Dr. ISIS MOHAMED GHALY

Professor of Pediatrics
Faculty of Medicine-Cairo University

Prof.Dr.FATMA El-MOGY

Professor of Clinical and Chemical Pathology Faculty of Medicine-Cairo University

Dr. LOBNA FAWAZ

Assistant Professor of Pediatrics Faculty of Medicine-Cairo University

Faculty of Medicine
Cairo University
2008

Acknowledgment

Thanks Allah for granting me the ability to complete this work till it comes to an end.

I wish to express my cordial appreciation and everlasting gratitude to **Prof.Dr. Isis**Mahmoud Ghaly. Professor of Pediatrics .Faculty of Medicine, Cairo University,
under whose supervision I had the honor to proceed with this work, for her
continuous help and encouragement in initiating and completing it.

I am also profoundly grateful to **Prof.Dr.Fatma El Mogy**. Professor of Clinical and Chemical Pathology, .Faculty of Medicine, Cairo University. For her keen supervision, continuous guidance, generous help, useful suggestions and valuable advice throughout the whole work.

I do feel greatly indebted to **Assistant Prof.Dr. Lobna Fawaz** Assistant Professor of Pediatrics. Faculty of Medicine, Cairo University for her great effort, generous advice, continuous help and encouragement during every step of this work.

Abstract

Tumors of the central nervous system constitute the largest group of solid neoplasms in children and are second only to leukemia in their overall frequency during childhood. Children with brain tumors may subsequently have deficits in neuroendocrine function a patient may have a deficiency of one hormone or any combination of hormones. The present work aimed to define the hypothalamo-hypophseal axis in patients presenting with intracranial tumors. This included cases that presented before and after treatment. A thirty cases of children suffering from brain tumors were investigated, to define the hypothalamo-hypophseal axis in patients presented with intracranial tumors, this included cases which presented pre or post-operatively.

Key Words

- Pituitary hormonal changes In pediatric brain tumor
- Pituitary Hormonal changes
- Hypothalamo-hypophseal axis
- Brain tumors
- Tumors of the central nervous system
- Solid neoplasms in children

TO MY PARENTS

TO WHOM I OWE ALL MY SUCCESS.

TO MY LOVING WIFE

THE GREATEST SUPPORT IN MY LIFE.

TO MY BELOVED DAUGHTER & SON

TO WHOM THIS WORK TOOK ME AT THIER EXPENSE.

CONTENTS

List of Tables	
List of Figures	
List of Abbreviations	
Introduction	
Aim of the work	
Review of literature	
ANATOMY OF THE PITUTARY GLAND	
THE ADENOHYPOPHYSIS	
ΓHE NEUROHYPOPHYSIS	
THE PORTAL SYSTEM TRANSFER OF INFORMATION F	ROM
NEUROHYPOPHYSIS TO ADENOHYPOPHYSIS	
HYPOTHALAMUS ANATOMY	
PHYSIOLOGY OF PITUTARY GLAND	
REGULATION OF THE NEUROENDOCRINE SYSTEM	
PATHOLOGY OF PITUITARY TUMORS	
GENERAL FEATURES AND CLASSIFICATION	
THE WHO CLASSIFICATION OF CNS TUMORS	
CLINICALPRESENTATION	
Clinical presentation of sellar and parasellar tumors	
Clinical presentation of posterior fossa tumors	

ENDOCRINAL DIAGNOSIS OF PITUTARY GLAND
.DIANGOSTIC EVALUATION
Assessment of Pituitary Hormone Reserve
Adrenal Axis
Thyroid Axis
Gonadal Axis
Assessment of Pituitary Functions
SOMATOTROPIC FUNCTION
THYROID FUNCTION

ADRENOCORTICOTROPIC HORMONE FUNCTION (ACTH)
GONADOTROPIC FUNCTION
PROLACTIN FUNCTION

DISTURBED PITUITARY FUNCTIONS
PROLACTIN-SECRETING TUMORS
TUMOUR
TSH- SECRETING PITUITARY ADENOMAS
GONADOTROPINSECRETING PITUITARY ADENOMAS
GROWTH HORMONE- SECRETING ADENOMAS
RADIO-DIAGNOSIS
PRE-OPERATIVE ENDOCRINE MANAGEMENT OF PATIENTS
WITH PITUARY TUMORS
PRE-OPERATIVE HORMONE
INTRA-OPERATIVE HORMONE THERAPY
IMMEDIATE POST-OPERATIVE REPLACEMENT THERAPY

LATE POST-OPERATIVE REPLACEMENT THERAPY-----

Methodology	
nethodology	
esults	
Discussion	
715CU5510II	
ummary and Conclusion	
inimary and Conclusion ————————————————————————————————————	
eferences	
eterences	
rahic summary	

List of tables

Tables
Table (1): Differential diagnosis of sellar region mass.
Table (2): Classification of pituitary adenomas according to radiographic appearance
Fable (3): Classification of pituitary adenomas according to endocrine function
Table (4): Classification of pituitary adenomas according to staining properties: Correlation with cytogenesis
Table (5): Classification of pituitary adenomas according to cytogenesis
. Table (6):WHO histological classification of tumors of CNS
Table (7): Normal endocrine values
Table (8): The endocrinal manifestations of the patients' pre- operatively
Table(9): The endocrinal manifestations of the patients' post-operatively
Table (10): Preoperative and postoperative mean and results of hormones
Table (11): Anthropometric measures for all patients in the study
Table (12): Difference in height SDS between patients with short stature and the other patients.
Table (13): The mean \pm SD of height SDS preoperative and postoperative 1st, 2nd, 3rd visits and growth velocities of short stature patients
Table (14): The mean \pm SD, of weight SDS preoperative and postoperative 1st, 2nd, 3rd visits and Body mass index of all patients of the study
Table (15): Basal mean levels and standard deviation of FSH, LH, E2, testosterone and prolactin for all cases pre and postoperative
Table (16): TSH, FT4 and FT3 levels pre- and postoperative

Table (17): Cortisol and ACTH levels pre- and postoperative	85
Table (18): The patients taking hormonal replacement therapy post- operatively	86

List of Figures

Figures	Pag
	14
Figure (1): Interactions among the Hypothalamus, Pituitary, and	
Target Glands	
Figure (2): MRI Scans and Drawings of the Scans of a Normal	26
Pituitary Gland and a Pituitary Macroadenoma	
	33
Figure (3): Fundus examinations for patient with brain tumor	
Figure (4): Brain tumor showing compressed adjacent brain	37
tissues	
Figure (5): Sex distribution among studied patients.	71
Figure (6): Consanguinity among studied patients.	72
Figure (7): Timing of clinical presentation.	73
Figure (8): Initial presentation among studied patients.	74
Figure (9): Sites of tumor among studied patients.	75
Figure (10): Type of tumor among studied patients.	76
Figure (11): Type of operation among studied patients.	77
Figure (12): Endocrinal symptoms preoperative.	78
Figure (13): Endocrinal symptoms postoperative	79
Figure (14): Ophthalmic symptoms.	80
Figure (15): Replacement therapy.	86
	0,

List of Abbreviations

ACTH: Adrenocorticotropic Hormone

ADH: Antidiuretic hormone

CNS: central nervous system

CRH: Corticotropin-releasing hormone

CT: Computed tomography

DI: Diabetes Insipidus

DPC: Diagnostic Product Corporation

DSL: Diagnostic Systems Laboratories

E2 : Estradiol

FSH: Follicular-stimulating hormone

GH: Growth hormone

GHRH: Growth Hormone Releasing Hormone

GnRH: Gonadotrophin Releasing Hormone

HPA: Hypothalamic-pituitary-adrenal

ICP: Intracranial pressure

IRMA: Immunoradiometric assy

LH: Luteinizing hormone

MPNST: Malignant peripheral nerve sheath tumor

MRI: Magnetic resonance imaging

mRNA: Messenger ribonucleic acid

PNET: Primitive neuroectodermal tumor

PRL: Prolactin

PVN: Paraventricular nuclei

RIA: Radioimmunoassay

SON: Supraoptic nuclei

SRIF: Serotonin Releasing Inhibitory Factor

FT3: FreeTriiodothyronine

FT4: FreeTetraiodothyronine (Thyroxin)

TSH: Thyroid stimulating hormoneTRH: Thyroid-stimulating hormoneWHO: World Health Organization

β-END: Beta- Endorphin

Introduction

Tumors of the central nervous system constitute the largest group of solid neoplasms in children and are second only to leukemia in their overall frequency during childhood. Each year, brain tumors develop in approximately 1500 to 2000 children in the United States; the number of tumors appears to have increased slightly from 1974 to 1988. (Astrakas et al., 2004)

Children with brain tumors may subsequently have deficits in neuroendocrine function. Although deficiency of growth hormone is common, hypothyroidism including (lethargy, intolerance to the cold, dry hair and pronounced weight gain, and constipation) and gonadal disturbances are reported and are presumed to occur only after particularly high doses of radiation. (*Gurney et al.*, 2003).

Most of the hypothalamic-pituitary-target-organ axes are tightly coordinated systems in which hormonal signals from the hypothalamus stimulate or inhibit secretion of anterior pituitary hormones; these hormones, in turn, act on specific organs. These axes are frequently described as closed-loop or negative-feedback systems, since circulating hormones secreted by target organs modulate hypothalamic and pituitary activity (*Gold*, 1998).

A patient may have a deficiency of one hormone or any combination of hormones, although deficiencies of corticotropin and thyrotropin may occur (Sauder et al., 1984).

Aim of work

The present work aimed to define the hypothalamo-hypophyseal axis in patients suffering from brain tumors investigated to define hypothalamo-hypophseal axis, this includes cases that presented pre or post operatively to Diabetes, Endocrine and Metabolism Pediatric Unit (DEMPU) of Cairo University Children's Hospital or referred to it from the Neurosurgery Clinic – Children's Hospital – Cairo University.presenting with intracranial tumors. This includes cases that presented before and after treatment. Whether the different treatment modalities surgery, chemotherapy, radiotherapy alone or in combination affect the hypothalamic-pituitary axis were investigated.