

#### Ain Shams University, Faculty of Engineering, Electrical Power and Machines Department

# Application of FACTS to Enhance the Performance of Power System with Growing Wind Power Penetration

## By Mahmoud Abdallah Attia

M. Sc. Electrical Engineering, Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Electrical Engineering



Ain Shams University, Faculty of Engineering, Electrical Power and Machines Department

# Application of FACTS to Enhance the Performance of Power System with Growing Wind Power Penetration

### $\mathbf{B}\mathbf{y}$

#### Mahmoud Abdallah Attia

M. Sc. Electrical Engineering, Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Electrical Engineering

Supervised by

| Prof. Dr. / Metwally Awad El-Sharkawy        |  |
|----------------------------------------------|--|
| Faculty of Engineering, Ain Shams University |  |
| Prof. Dr. / Almoataz Youssef Abdelaziz       |  |
| Faculty of Engineering, Ain Shams University |  |

#### APPROVAL SHEET

For the thesis entitled

# Application of FACTS to Enhance the Performance of Power System with Growing Wind Power Penetration

## Presented by Mahmoud Abdallah Attia

M. Sc. Electrical Engineering, Ain Shams University, 2010

#### Approved by

| Prof. Dr. / Mohamed Galal Abdel Hamid Osman  |  |
|----------------------------------------------|--|
| Faculty of Engineering, Mansoura University  |  |
| Prof. Dr. / Mohamed Abdel Rahim Mohamed Badr |  |
| Faculty of Engineering, Ain Shams University |  |
| Prof. Dr. / Metwally Awad El-Sharkawy        |  |
| Faculty of Engineering, Ain Shams University |  |
| Prof. Dr. / Almoataz Youssef Abdelaziz       |  |
| Faculty of Engineering, Ain Shams University |  |

Date: / /2015

#### Contents

| List of Tables                                                           | IV  |
|--------------------------------------------------------------------------|-----|
| List of Figures                                                          | V   |
| List of Abbreviations                                                    | b   |
| Abstract                                                                 | X   |
| Statement                                                                | XII |
| Curriculum vitae                                                         | XIV |
| Acknowledgements                                                         | XV  |
| Chapter 1 Introduction                                                   | 1   |
| 1.1. Wind power                                                          |     |
| 1.3. The physics                                                         | 3   |
| 1.4. Power curve                                                         | 4   |
| 1.5. Types of wind turbines                                              | 6   |
| 1.5.1. Vertical axis turbine                                             | 6   |
| 1.5.2. Horizontal axis turbine                                           | 6   |
| 1.5.3. Construction                                                      | 7   |
| 1.6. Overview of wind turbine topologies [5]                             | 7   |
| 1.6.1. Introduction                                                      | 7   |
| 1.6.2. Types of wind turbines in details [5]                             | g   |
| 1.7. Overview of power control concepts [5]                              | 12  |
| 1.7.1. Stall control (passive control)                                   | 12  |
| 1.7.2. Pitch control (active control)                                    | 12  |
| 1.7.3. Active stall control                                              | 12  |
| 1.8. When wind farm is disconnected                                      | 13  |
| 1.9. Examples of wind operation under voltage and frequency variation    | 14  |
| 1.10. FACTS                                                              | 16  |
| 1.10.1. FACTS types                                                      | 16  |
| 1.10.2. Types used in this work                                          | 19  |
| Chapter 2 FACTS solutions for wind energy problems (a literature survey) | 27  |
| 2.2. Survey in [21]                                                      | 27  |
| 2.4. Survey in other references found that:                              | 31  |

| 2.4. General comments                                                            | 33 |
|----------------------------------------------------------------------------------|----|
| Chapter 3 Mathematical Modeling and Solution Technique                           | 34 |
| 3.1. Introduction                                                                | 34 |
| 3.2. Brief Survey of some optimization techniques                                | 34 |
| 3.2.1. Introduction                                                              | 34 |
| 3.2.2. Linear programming (LP) method                                            | 35 |
| 3.2.3. Quadratic programming (QP) method                                         | 35 |
| 3.2.4. Nonlinear programming (NLP) method                                        | 36 |
| 3.2.5. Interior Point (IP) method                                                | 36 |
| 3.2.6. Artificial Intelligence (AI) methods                                      | 37 |
| 3.3.1. Introduction                                                              | 40 |
| 3.3.2. AI                                                                        | 40 |
| 3.4. FACTS model                                                                 | 42 |
| 3.5. Wind generator model                                                        | 44 |
| 3.6. Literature survey on optimal allocation of FACTS devices in power systems   | 45 |
| 3.6.1. Using Genetic Algorithm (GA)                                              | 45 |
| 3.6.2. Using particle swarm optimization (PSO)                                   | 47 |
| 3.6.3. Using GA and PSO                                                          | 47 |
| 3.6.4. Using bacterial swarming algorithm                                        | 48 |
| 3.6.5. Using sensitivity indices                                                 | 48 |
| 3.6.6. Using Mixed-Integer Programming                                           | 50 |
| 3.8. Proposed Optimization Technique                                             | 50 |
| Chapter 4 Selection of Suitable Techniques for Solving Wind Penetration Problems | 54 |
| 4.1. Cases under study for Model 1 of wind generators                            | 54 |
| 4.1.1. Selecting the type of FACTS and suitable ranking of lines                 | 54 |
| 4.1.1.1. Case study 1                                                            | 54 |
| 4.1.1.2. Case study 2                                                            | 70 |
| Chapter 5 Effect of Different System Topologies on Wind Penetration              | 82 |
| 5.1. Simulation Results:                                                         | 82 |
| 5.1.1. Wind power increases by 50%                                               | 82 |
| 5.1.2. Wind power increased by 100%.                                             | 86 |
| 5.1.3. Wind power increased by 150%.                                             | 91 |

| 5.1.4. Wind power increased by 170%                                                         | 96   |
|---------------------------------------------------------------------------------------------|------|
| 5.1.5. Wind power increased by 100% by another way                                          | 100  |
| Chapter 6 Application of The Proposed Technique on Different Types of Wind Generator Models | 105  |
| 6.1. Model 2 of Wind Generator                                                              | 105  |
| 6.1.1. Cases studied                                                                        | 105  |
| 6.1.2. Multi-location of wind power model 2                                                 | 114  |
| 6.2. Model 3 of wind generator                                                              | 120  |
| 6.2.1. Cases studied                                                                        | 120  |
| 6.2.2. Reactive power required by grid code                                                 | 131  |
| 6.3. Model 3 of wind generator in a system having high wind penetration                     | 136  |
| 6.3.1. Case studied                                                                         | 136  |
| Chapter 7 Conclusion and future works                                                       | 147  |
| 7.1. Conclusions                                                                            | 147  |
| 7.2. Future works and recommendation                                                        | 148  |
| References                                                                                  | 1/19 |

#### **List of Tables**

| Table 1-1 Voltage range for wind operation                                       | 13   |
|----------------------------------------------------------------------------------|------|
| Table 1-2 Harmonics level for wind operation                                     | 14   |
| Table 3-1 Fields of optimization techniques                                      | 39   |
| Table 4-1 Voltage profile with and without FACTS using the first ranking method  | 56   |
| Table 4-2 Power angle with and without FACTS using the first ranking method      | 57   |
| Table 4-3 FACTS value capacitive range using the first ranking method            | 59   |
| Table 4-4 FACTS value inductive-capacitive range using the first ranking method  | 60   |
| Table 4-5 Shunt FACTS value using the first ranking method                       | 60   |
| Table 4-6 Summary of results using the first ranking method                      | 61   |
| Table 4-7 Voltage profile with and without FACTS using the second ranking method | 62   |
| Table 4-8 Power angle with and without FACTS using the second ranking method     | 65   |
| Table 4-9 TCSC capacitive range using the second ranking method                  | 67   |
| Table 4-10 Comparison between first and second method of ranking                 | 68   |
| Table 4-11 Cost saving                                                           | 69   |
| Table 4-12 Voltage profile with and without FACTS                                | 71   |
| Table 4-13 Power angle with and without FACTS                                    | 72   |
| Table 4-14 TCSC capacitive range values                                          | 72   |
| Table 4-15 TCSC inductive-capacitive range                                       | 73   |
| Table 4-16 Shunt FACTS value                                                     | 73   |
| Table 4-17 Voltage profile with and without FACTS                                | 77   |
| Table 4-18 Power angles (delta) with and without FACTS                           | 78   |
| Table 4-19 FACTS value capacitive range second ranking method                    | 79   |
| Table 4-20 Summary of results                                                    | 80   |
| Table 4-21 Cost saving                                                           | 81   |
| Table 5-1 System parameters profile with wind increases by 50 %                  | 82   |
| Table 5-2 FACTS location with wind increases by 50 %                             | 86   |
| Table 5-3 System parameters profile with wind increases by 100 %                 | 87   |
| Table 5-4 FACTS location with wind increases by 100 %                            | 91   |
| Table 5-5 System parameters profile with wind increases by 150 %                 | 92   |
| Table 5-6 FACTS location with wind increases by 150 %                            | . 95 |

| Table 5-7 System parameters profile with wind increases by 170 %                                                         | 96    |
|--------------------------------------------------------------------------------------------------------------------------|-------|
| Table 5-8 FACTS location with wind increases by 170 %                                                                    | 99    |
| Table 5-9 100% increase by multi wind location                                                                           | 100   |
| Table 5-10 FACTS location with 100% increase by multi wind generators location                                           | 104   |
| Table 6-1 System parameters profile with wind penetration increases by 50 %                                              | 105   |
| Table 6-2 System parameters profile with wind penetration increases by 100 %                                             | 108   |
| Table 6-3 System parameters profile with wind penetration increases by 150 %                                             | 111   |
| Table 6-4 FACTS values and locations                                                                                     | 114   |
| Table 6-5 System parameters profile with wind penetration increased by 100 $\%$                                          | 115   |
| Table 6-6 System parameters profile after adding another wind generator                                                  | 116   |
| Table 6-7 FACTS values and locations                                                                                     | 119   |
| Table 6-8 System parameters profile with reactive power injected from the network to wind bus is 10% of wind generation  | า 120 |
| Table 6-9 System parameters profile with reactive power injected from the network to wind bus is 20% of wind generation  | າ 123 |
| Table 6-10 System parameters profile with reactive power injected from the network to wind bus is 30% of wind generation | 126   |
| Table 6-11 System parameters profile with reactive power injected from the network to wind bus is 40% of wind generation | 128   |
| Table 6-12 FACTS values and locations                                                                                    | 131   |
| Table 6-13 System parameters profile with reactive power injected from the network to wind bus is 35% of wind generation | 132   |
| Table 6-14 FACTS values and locations                                                                                    | 134   |
| Table 6-15 COST SAVING WITH REACTIVE POWER 35 % OF WIND ACTIVE POWER                                                     | 135   |
| Table 6-16 System parameters profile with reactive power injected from the network to wind bus is 20% of wind generati   | on137 |
| Table 6-17 Cost saving in %20 reactive power injected capacitive range                                                   | 141   |
| Table 6-18 Cost saving in %20 reactive power injected capacitive-inductive range                                         | 141   |
| Table 6-19 System parameters profile with reactive power injected from the network to wind bus is                        | 40%   |
| of wind generation                                                                                                       | 142   |
| Table 6-20 cost saving in %40 reactive power injected                                                                    | 145   |
| Table 6-21 FACTS values and locations                                                                                    | 146   |

#### List of Figures

| Figure 1-1 expected increase in EU's share of electricity provided by wind power                                        | 1  |
|-------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1-2 Wind spectrum based on work by Hoven [5, 6]                                                                  | 2  |
| Figure 1-3 Typical power curve of a 1500 KW pitch regulated wind turbine with a cut-out speed of 25 m sec <sup>-1</sup> | 5  |
| Figure 1-4 Wind turbine configuration                                                                                   | 6  |
| Figure 1-5 vertical axis rotor                                                                                          | 7  |
| Figure 1-6 horizontal axis rotor                                                                                        | 7  |
| Figure 1-7 Typical wind turbine configurations.                                                                         | 11 |
| Figure 1-8 Wind generator operation in case of grid frequency voltage variations                                        | 15 |
| Figure 1-9 Fault ride through profile for a wind farm                                                                   | 15 |
| Figure 1-10 Overview of major FACTS controllers                                                                         | 18 |
| Figure 1-11 basic structures of thyristor controlled reactor (TCR) and its characterizes                                | 20 |
| Figure 1-12 principle setup and operational diagram of a Thyristor controlled series compensation $\dots$               | 21 |
| Figure 1-13 Thyristor-controlled series capacitors (source ABB)                                                         | 22 |
| Figure 1-14 simple diagram of TCSC device                                                                               | 23 |
| Figure 1-15 impedance Vs firing angle characteristic curve                                                              | 24 |
| Figure 3-1 Model of TCSC                                                                                                | 43 |
| Figure 3-2 SVC model                                                                                                    | 44 |
| Figure 3-3 flow chart                                                                                                   | 52 |
| Figure 4-1 modified IEEE 39 bus system                                                                                  | 55 |
| Figure 4-2 Total loss                                                                                                   | 75 |
| Figure 4-3 Maximum voltage                                                                                              | 75 |
| Figure 4-4 Minimum voltage                                                                                              | 75 |
| Figure 4-5 Power angle (delta)                                                                                          | 76 |
| Figure 4-6 Wind line loss                                                                                               | 76 |
| Figure 5-1 Total loss with wind increases by 50 %                                                                       | 84 |
| Figure 5-2 Maximum voltage with wind increases by 50 %                                                                  | 84 |
| Figure 5-3 Minimum voltage with wind increases by 50 %                                                                  | 85 |
| Figure 5-4 Power angle with wind increases by 50 %                                                                      | 85 |
| Figure 5-5 Total loss with wind increases by 100 %                                                                      | 88 |
| Figure 5-6 Maximum voltage with wind increases by 100 %                                                                 | 89 |

| Figure 5-7 Minimum voltage with wind increases by 100 %                   | 89  |
|---------------------------------------------------------------------------|-----|
| Figure 5-8 power angle minimum with wind increases by 100 %               | 90  |
| Figure 5-9 power angle maximum with wind increases by 100 %               | 90  |
| Figure 5-10 Total loss with wind increases by 150 %                       | 93  |
| Figure 5-11 Maximum voltage with wind increases by 150 %                  | 93  |
| Figure 5-12 Minimum voltage with wind increases by 150 %                  | 94  |
| Figure 5-13 Power angle minimum with wind increases by 150 %              | 94  |
| Figure 5-14 power angle maximum with wind increases by 150 %              | 95  |
| Figure 5-15 Total loss with wind increases by 170 %                       | 97  |
| Figure 5-16 Maximum voltage with wind increases by 170 %                  | 97  |
| Figure 5-17 Minimum voltage with wind increases by 170 %                  | 98  |
| Figure 5-18 Power angle minimum with wind increases by 170 %              | 98  |
| Figure 5-19 Power angle maximum with wind increases by 170 %              | 99  |
| Figure 5-20 Total loss with 100% increase by multi wind location          | 102 |
| Figure 5-21 Maximum voltage with 100% increase by multi wind location     | 102 |
| Figure 5-22 Minimum voltage with 100% increase by multi wind location     | 103 |
| Figure 5-23 Power angle minimum with 100% increase by multi wind location | 103 |
| Figure 5-24 Power angle maximum with 100% increase by multi wind location | 103 |
| Figure 6-1 Total loss with wind increases by 50 %                         | 106 |
| Figure 6-2 Maximum voltage with wind increases by 50 %                    | 106 |
| Figure 6-3 Minimum voltage with wind increases by 50 %                    | 107 |
| Figure 6-4 Power angle minimum with wind increases by 50 %                | 107 |
| Figure 6-5 Total loss with wind increases by 100 %                        | 109 |
| Figure 6-6 Maximum voltage with wind increases by 100 %                   | 109 |
| Figure 6-7 Minimum voltage with wind increases by 100 %                   | 110 |
| Figure 6-8 Power angle minimum with wind increases by 100 %               | 110 |
| Figure 6-9 Power angle maximum with wind increases by 100 %               | 111 |
| Figure 6-10 Total loss with wind increases by 150 %                       | 112 |
| Figure 6-11 Maximum voltage with wind increases by 150 %                  | 112 |
| Figure 6-12 Minimum voltage with wind increases by 150 %                  | 113 |
| Figure 6-13 Power angle minimum with wind increases by 150 %              | 113 |
| Figure 6-14 Power angle Maximum with wind increases by 150 %              | 113 |

| Figure 6-15 Total loss-Wind Power increases by 100% through adding another wind generator 117                                      |
|------------------------------------------------------------------------------------------------------------------------------------|
| Figure 6-16 Maximum voltage- Wind Power increases by 100% through adding another wind generator                                    |
| Figure 6-17 Minimum voltage- Wind Power increases by 100% through adding another wind generator                                    |
| Figure 6-18 Power angle minimum- Wind Power increases by 100% through adding another wind generator                                |
| Figure 6-19 Power angle maximum - Wind Power increases by 100% through adding another wind generator                               |
| Figure 6-20 Total loss with reactive power injected from the network to wind bus is 10% of wind generation                         |
| Figure 6-21 Maximum voltage with reactive power injected from the network to wind bus is 10% of wind generation 122                |
| Figure 6-22 Minimum voltage with reactive power injected from the network to wind bus is 10% of wind generation 122                |
| Figure 6-23 Power angle minimum with reactive power injected from the network to wind bus is 10% of wind generation 123            |
| Figure 6-24 Total loss with reactive power injected from the network to wind bus is 20% of wind generation                         |
| Figure 6-25 Maximum voltage with reactive power injected from the network to wind bus is 20% of wind generation 124                |
| Figure 6-26 Minimum voltage with reactive power injected from the network to wind bus is 20% of wind generation 125                |
| Figure 6-27 Power angle minimum with reactive power injected from the network to wind bus is 20% of wind generation 125            |
| Figure 6-28 Total loss with reactive power injected from the network to wind bus is 30% of wind generation                         |
| Figure 6-29 Maximum voltage with reactive power injected from the network to wind bus is 30% of wind generation 127                |
| Figure 6-30 Minimum voltage with reactive power injected from the network to wind bus is 30% of wind generation 128                |
| Figure 6-31 Power angle minimum with reactive power injected from the network to wind bus is 30% of wind generation 128            |
| Figure 6-32 Total loss with reactive power injected from the network to wind bus is 40% of wind generation                         |
| Figure 6-33 Maximum voltage with reactive power injected from the network to wind bus is 40% of wind generation                    |
| Figure 6-34 Minimum voltage with reactive power injected from the network to wind bus is 40% of wind generation                    |
| Figure 6-35 Power angle minimum with reactive power injected from the network to wind bus is 40% of wind generation 130            |
| Figure 6-36 Total loss with reactive power injected from the network to wind bus is 35% of wind generation                         |
| Figure 6-37 Maximum voltage with reactive power injected from the network to wind bus is 35% of wind generation                    |
|                                                                                                                                    |
| Figure 6-38 Minimum voltage with reactive power injected from the network to wind bus is 35% of wind generation                    |
| Figure 6-39 Power angle minimum with reactive power injected from the network to wind bus is 35% of wind generation 134            |
| Figure 6-40 IEEE 9 bus systems                                                                                                     |
| Figure 6-41 Total loss with reactive power injected from the network to wind bus is 20% of wind generation-IEEE 9 bus 138          |
| Figure 6-42 Maximum voltage with reactive power injected from the network to wind bus is 20% of wind generation IEEE 9 bus 139     |
| Figure 6-43 Minimum voltage with reactive power injected from the network to wind bus is 20% of wind generation IEEE 9 bus 139     |
| Figure 6-44 Power angle minimum with reactive power injected from the network to wind bus is 20% of wind generation IEEE 9 bus 140 |
| Figure 6-45 Power angle maximum with reactive power injected from the network to wind bus is 20% of wind generation IEEE 9 bus     |
| Figure 6-46 Total loss with reactive power injected from the network to wind bus is 40% of wind generation-IEEE 9 bus143           |
| Figure 6-47 Maximum voltage with reactive power injected from the network to wind bus is 40% of wind generation IEEE 9 bus143      |
| Figure 6-48 Minimum voltage with reactive power injected from the network to wind bus is 40% of wind generation IEEE 9 bus 144     |
| Figure 6-49 Power angle minimum with reactive power injected from the network to wind bus is 40% of wind generation IEEE 9 bus 144 |
| Figure 6-50 Power angle maximum with reactive power injected from the network to wind bus is 40% of wind generation. IEEE 9 bus    |

#### **List of Abbreviations**

o AI : Artificial intelligence

o BSA : Bacterial swarming algorithmo FACTS : Flexible AC transmission systems

o GA : Genetic algorithm

o HVDC : High voltage direct current

o IP : Interior point

o LP : Linear programming

Max Maximum Min Minimum

o NLP : Nonlinear programming

NR : Newton RaphsonOPF : Optimal power flow

PSO : Partical swarm optimizationQP : Quadratic programming

o STATCOM : Static Synchronous compensator

o SVC : Static VAr compensator

o TCPST : Thyristor controlled phase shifting transformer

TCVR : Thyristor controlled voltage regulator
 TCSC : Thyristor-controlled series compensators

o TTC : Total transfer capability

o UPFC : Unified power flow controller

o WTG : Wind turbine generator

CSWTG : Constant speed wind turbine generatorSCIG : Squirrel cage induction generator

PCC : Point of common coupling
 DFIG : double fed induction generator

o LVRT : Low voltage ride through

o WPP : Wind power plant

TCR : Thyristor Controlled Reactor
 TSR : Thyristor Switched Reactor
 TSC : Thyristor Switched Capacitor

o C range : Capacitive range

L-C range : Inductive-capacitive rangeDVR : dynamic voltage restorer

TSO : Transmission System OperatorsWRIG : Wound rotor induction generator

o PMSG : Permanent magnet synchronous generator

WRSG : Wound rotor synchronous generator

#### **List of Symbols**

o  $\theta_p$  : Phase shift angle

o Delta  $(\delta)$  : Power angle

o P : Power flow

o P<sub>d</sub> : Power demand

 $\circ$  P<sub>g</sub> : Generated power

 $\circ$   $P_{loss}$  : Power loss

o % : A percent

o Q : Reactive power flow

o Q<sub>d</sub> : Reactive power demand

o Q<sub>g</sub> : Generated reactive power

o Q<sub>loss</sub> : Reactive power loss

o Q<sub>s</sub> : Reactive power injected or absorbed by SVC

o S : Complex power

o T<sub>v</sub> : Tab change transformer turns ratio

o V : Voltage

o  $X_{TCSC}$ : Reactance added to line by TCSC

 $\circ$   $X_1$ : Line reactance

 $\circ \quad \alpha$  : Firing angle of thyristor

#### **Abstract**

Wind generation connection to a power system affects its steady state and transient stability. This effect increases with the increase of wind generation capacity penetration. Most of literature don't cover the steady-state performance of the power system after wind variation even with the bad effects of this variation on voltage profile, power angle and power limits. Furthermore, the literature is mainly concerned with the shunt FACTS devices for example STATCOM and SVC to enhance the performance of the power system suffering from wind penetration, and minor interest is directed to series FACTS as TCSC. There may give better techno-economical solutions for the problems associated with wind penetration in power system than shunt devices.

Some publications are concerned with SVC as a way to enhance the power system performance with wind penetration. SVC can't perform well with low voltage at its location as proved in this thesis. Also the literature did not cover the wind penetration limit while keeping the power system operated without any violation in its indices. Finally, some literatures consider the cost of FACTS devices as an additional problem of wind energy penetration, although the FACTS may eventually make net saving in the cost through reducing the total loss.

In this work, determining the optimal location of FACTS devices to solve the problem associated with wind penetration in power systems is carried out by using genetic algorithm optimization technique. The proposed method in this work is applied to the modified IEEE 39-bus system and to another higher wind penetration system as IEEE 9-bus system.

The first part of the study in this thesis is devoted to the selection of suitable FACTS type and ranking method. Two methods of lines ranking are studied. The first one is based on the minimum voltage allowed and the other method is based on the maximum lines over load. The results show that **TCSC** with capacitive range is the best solution for this problem, as it allows the system to operate without violating the power, voltage and power angle limits. Also it reduces the total loss of the system which gives wind generator more spare to cover its generation variation. Also it increases the minimum voltage to acceptable limit which is considered as an improvement in voltage profile. Results also proved that the ranking

### according to the minimum voltage allowed better cost saving and better power system performance than the other method of ranking.

After the selection is fulfilled, the second part, which deals with maximizing the wind energy penetration of the system by using TCSC is performed under several topologies of system. This is based on the first model of wind generator. In this model the wind generator is considered as a generator producing besides the active power a reactive power within 33% of the active power. Three case studies of the system are considered: system without change; system with reduction of the impedance of the lines connected to the wind generator by 50% and system with the location of wind generator transferred to another location which has more interconnection with the network.

Finally 100% increase of wind generation is done by another way, by adding new wind generator at the bus which has more interconnection to the system. Results show that optimal TCSC allocation with reduction of the impedance of the line connected to the wind generator by 50% has increased the wind power penetration by 170 % of its normal generation without violating the system parameters. It is also shown that multi location of wind generation, if possible, is better than wind generation penetration in the same location.

Other studies are carried out to increase wind penetration based on the second and third model of wind generation (The generator produces active power and doesn't inject any reactive power to the network and a generator produces active power and consumes reactive power respectively). The results show that TCSC with capacitive range is the best solution for this problem. It can cover the required reactive power by the wind generation while keeping the system operate without power, voltage and power angle limits violated. Moreover, reactive power needed according to the grid code can be covered by using TCSC. Furthermore TCSC can achieve good cost saving in addition to the enhancement of operation of the wind generator.

Finally, in model 3 of wind, studies are carried out on a modified IEEE 9-bus system which has higher wind penetration more than before, with change in reactive power injection to the wind bus from the network. Results verify that TCSC with capacitive range is still the best solution for the problems associated with wind penetration.