Serum pro-hepcidin Levels in Term and Preterm Newborns with Sepsis

Thesis submitted for partial fulfillment of Master Degree in **Pediatrics**

Presented by

Mohamed Bahlol Mohamed Abd-Ellatif

M.B.B.Ch – Ain Shams University (2007)

Under Supervision of

Prof. Safaa Shafik Emam

Professor of Pediatrics

Faculty of Medicine – Ain Shams University

Prof. Karim Yahia Shahin

Assistant Professor of Clinical and Chemical Pathology
Faculty of Medicine
Ain Shams University

Dr. Rania Ibrahim Hossni Ismail

Lecturer of Pediatrics

Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2014

First and for most, thanks to **God** who have lightened my path to become a humble student of a noble profession and granted me the ability to accomplish this work.

I would like to express my sincere feelings of appreciation and admiration to *Prof. Dr. Safaa Shafik Emam*, Professor of Pediatrics, Faculty of Medicine, Ain-Shams University for her tremendous support that helped me through this work. I am deeply grateful for her more than words can ever express.

Also I would like to thank and express my appreciation to **Dr. Karim Yahia Shahin**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain-Shams University, for her kind help, valuable guidance, assistance and encouragement.

I would like also to express my deep feelings of gratitude to **Dr. Rania Ibrahim Hossni Ismail**, Lecturer of Pediatrics, Faculty of Medicine, Ain-Shams University for her indescribable support and meticulous revision of this work.

Finally yet importantly, I would like to express my gratitude to my family for their love and support, also my NICU in Gyna & Obstetric hospital & my private hospital (Abdelkader Fahmy) and everyone who participated in some way to let this work come to such final picture, I owe my thanks and gratitude.

Mohamed Vahlol Mohamed Abd-Ellatif

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the work	3
Review of Literature	
Neonatal Sepsis	4
Hepcidin	53
Patients and Methods	73
Results	87
Discussion	133
Summary	147
Conclusion	150
Recommendations	151
References	152
Arabic Summary	

List of Abbreviations

ACD Anemia of chronic disease

ALI acute lung injury

ANC absolute neutrophil count

ANOVA A one-way analysis of variance

BPD broncho-pulmonary dysplasia

CBC Complete blood count

CDC Centers for Disease Control

CHr hemoglobin content

CONS Commensal organisms such as coagulase-negative

staphylococci

CRP C reactive protein

ELISA enzyme-linked immunosorbent assay

EOS Early-Onset Sepsis

ESAs erythropoiesis-stimulating agents

FID..... Functional iron deficiency

GBS group B Streptococcus

HH hereditary hemochromatosis

HYPO hypochromic red blood cells

IAP intrapartum antibiotic prophylaxis

IL-6.... interleukin 6

IVIG Intravenous Immunoglobulin

JAK2..... Janus kinase 2

LEAP liver-expressed antimicrobial peptide

LOS Late-Onset Sepsis

LOS Late-Onset Sepsis

List of Abbreviations (Cont...)

MCV mean corpuscular volume

NE Necrotizing enterocolitis

NICHD National Institute of Child Health and Human

Development

NS Neonatal sepsis

PCT procalcitonin

SDA Sabouraud's dextrose agar plat

SIRS Systemic inflammatory response syndrome

SPSS Statistical Package for Social Sciences

TGF-β transforming growth factor- β

TNF tumor necrosis factor

TNF-a tumor necrosis factor

TTN Transient tachypnea of the newborn

UTIs urinary tract infections

X2..... Chi-square

Tist of Tables

Table No.	Title	Page No.
Table (1):	Organisms Causing Neonatal EOS	6
Table (2):	Organisms Causing EOS in VLBW Infants	6
Table (3):	Host Responses to Bacterial Infection in the Neon	nate 12
Table (4):	Obstetrical Risk Factors for Neonatal Infection	18
Table (5):	Neonatal Risk Factors for Infection/Sepsis	19
Table (6):	Sepsis Score	25
Table (7):	Sepsis score: Examination of Clinical Hematological Symptoms in neonatal sepsis	
Table (8):	Conditions with Similar Clinical Presentati Infection and/or Sepsis.	
Table (9):	Principles for the Prevention of Nosocomial Intin the Neonatal Intensive Care Unit	
Table (10):	Guidelines for empiric treatment for presumed no sepsis (with or without meningitis) in the first molife.	onth of
Table (11):	Proteins involved with Hepcidin regulation of transport	
Table (12):	Hepcidin in the pathogenesis of iron disorders	66
Table (13):	Comparison between sepsis and control ground regard all demographic data	
Table (14):	Comparison between sepsis and control groundered maternal risk factors.	
Table (15):	Comparison between Sepsis and control ground regard Laboratory iron profile and prohepcidin	
Table (16):	Comparison between Sepsis and control groungered CBC	
Table (17):	Comparison between Sepsis and control groungeregard outcomes	
Table (18):	Comparison between control FT and Septic regard demographic data	96

List of Tables (Cont...)

Table No.	Title	Page No.
Table (19):	Comparison between FT control and Septic regard maternal risk factors.	
Table (20):	Comparison between FT control and Septic regard laboratory Iron profile and prohepcidin	
Table (21):	Comparison between FT control and Septic regard CBC	
Table (22):	Comparison between FT control and Septic regard outcomes	
Table (23):	Comparison between Septic PT and PT con regard demographic data	
Table (24):	Comparison between Septic PT and PT con regard preeclamsia, PROM, Chorioamnioniti bloody amniotic fluid	is and
Table (25):	Comparison between Septic PT and PT con regard laboratory iron profile and prohepcidin	
Table (26):	Comparison between Septic PT and PT con regard CBC	
Table (27):	Comparison between Septic PT and PT con regard outcomes	
Table (28):	Comparison between Septic FT and Septic PT as demographic data	•
Table (29):	Comparison between Septic FT and Septic PT as maternal risk factors.	
Table (30):	Comparison between Septic FT and Septic PT as laboratory iron profile and prohepcidin	
Table (31):	Comparison between Septic FT and Septic PT as CBC and rodwell septic score	
Table (32):	Comparison between Septic FT and Septic PT as outcomes.	0
Table (33):	Correlation of Pro-hepcidin with laboratory rodwell score and demographic data in septic gro	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (34):	Correlation of Total iron with laboratory data, rescore and demographic data in septic group	
Table (35):	Correlation of Transferrin % with prohe laboratory data, rodwell score and demographic septic group	data in
Table (36):	Correlation of TIBC with prohepcidin, laborator rodwell score and demographic data in septic gro	
Table (37):	Correlation of serum ferritin with prohe laboratory data, rodwell score and demographic septic group	data in
Table (38):	Correlation of pro-hepcidin with laboratory rodwell score and demographic data in control gr	
Table (39):	Correlation of total iron with laboratory data, rescore and demographic data in control group	
Table (40):	Correlation of transferrin% with laboratory rodwell score and demographic data in control graphic data in control graphic data in control graphic data.	•
Table (41):	Correlation of TIBC with laboratory data, rodwel and demographic data in control	
Table (42):	Correlation of serum ferritin with laboratory rodwell score and demographic data in control	•
Table (43):	Diagnostic Performance of prohepcididiscrimination patients and control	
Table (44):	Diagnostic Performance of Prohepcidiscrimination septic FT and FT control	
Table (45):	Diagnostic Performance of Pro_hepcid discrimination septic PT and PT control	

List of Figures

Fig. M	o. Title Page No.	
Fig (1):	Effects of inflammation on erythropoiesis and iron homeostasis in mammals	14
Fig. (2):	Clinical manifestation of sepsis.	23
Fig. (3):	Blood film showing "toxic" neutrophils, with coarse cytoplasmic granules and vacuolation of the cytoplasm	26
Fig. (4):	A blood film from a neonate with severe sepsis. A phagocyte is shown having ingested several bacilli, reflecting significant bacteremia. Blood cultures revealed a growth of Klebsiella pneumonia	38
Fig. (5):	Algorithm for the management of a newborn whose mother received Intrapartum prophylaxis agents	44
Fig. (6):	Most of the utilized body iron is recycled from senescent erythrocytes by macrophages, and returned to the bone marrow for incorporation in erythroid precursors	51
Fig. (7):	Molecule structure of human synthetic hepcidin-25	53
Fig. (8):	Regulation of body iron homeostasis by hepcidin	56
Fig. (9):	Model of pathways involved in hepcidin regulation	60
Fig. (10):	MRF in both studied groups	87
Fig. (11):	Total iron in both studied groups.	89
Fig. (12):	Total serum ferritin in both studied groups.	89
Fig. (13):	Transferrin% in both studied groups.	90
Fig. (14):	Prohepcidin in both studied groups.	90
Fig. (15):	Hb in both studied group.	92
Fig. (16):	HCT in both studied group.	92
Fig. (17):	PMNL in both studied group.	93
Fig. (18):	PLT in both studied group	93
Fig. (19):	Respiratory support in both studied group.	95
Fig. (20)	RDS, PDA and outcome in both studied group	95
Fig. (21):	Total iron in FT patient and control.	99

Tist of Figures (Cont...)

Fig. M	o. Title	Page No.
Fig. (22):	Serum ferritin in FT patient and control	99
Fig. (23):	Transferritin% in FT patient and control	100
Fig. (24):	Pro-hepcidin in FT patient and control	100
Fig. (25):	PLT in FT patient and control	102
Fig. (26):	Total iron in PT patient and control	107
Fig. (27):	Serum ferritin in PT patient and control	107
Fig. (28):	Transferritin% in PT patient and control	108
Fig. (29):	Pro-hepcidin in PT patient and control	108
Fig. (30):	PLT in PT patient and control	110
Fig. (31):	Serum ferritin in both septic PT and septic FT	115
Fig. (32):	Transferritin% in both septic PT and septic FT	115
Fig. (33):	TIBC in both septic PT and septic FT	116
Fig. (34):	Pro-hepcidin in both septic PT and septic FT	116
Fig. (35):	Correlation of Pro-hepcidin with total serum iron	
Fig. (36):	Correlation of Pro-hepcidin with transferrin %	120
Fig. (37):	Correlation of Pro-hepcidin with gestational age.	121
Fig. (38):	Correlation of Pro-hepcidin with weight	121
Fig. (39):	Correlation of total serum iron with HB	123
Fig. (40):	Correlation of total serum iron with HCT	123
Fig. (41):	Correlation of total serum iron with serum ferriting	n 124
Fig. (42):	Correlation of total serum iron with transferrin	124
Fig. (43):	Correlation of total serum iron with TIBC	125
Fig. (44):	Correlation of total serum iron with gestational ag	ge 125
Fig. (45):	Correlation of total serum iron with weight	126
Fig. (46):	Correlation of transferrin with serum ferritin	128
Fig. (47):	Correlation of transferrin with TIBC.	128
Fig. (48):	Correlation of transferrin with gestational age	129

Tist of Figures $_{(Cont...)}$

Fig. W	o. Title	Page No.
Fig. (49):	Correlation of transferrin with weight	129
Fig. (50):	Correlation of TLBC with HB.	131
Fig. (51):	Correlation of TLBC with HCT	131
Fig. (52):	Correlation of TLBC with serum ferritin	
Fig. (53):	Correlation of TLBC with transfrrin	
Fig. (54):	Correlation of TLBC with gestational age	133
Fig. (55):	Correlation of TLBC with weight	133
Fig. (56):	Correlation of serum ferritin with HCT	135
Fig. (57):	Correlation of serum ferritin with HB	135
Fig. (58):	Correlation of serum ferritin with TIBC.	136
Fig. (59):	Correlation of serum ferritin with gestational age	136
Fig. (60):	Correlation of serum ferritin with weight	137
Fig. (61):	Correlation of prohepcidin with HCT	139
Fig. (62):	Correlation of total iron with Hb	141
Fig. (63):	Correlation of total iron with serum ferritin	142
Fig. (64):	Correlation of total iron with transferrin %	142
Fig. (65):	Correlation of total iron with TIBC	143
Fig. (66):	Correlation of total iron with gestational age (wk	xs)143
Fig. (67):	Correlation of total iron with weight (kg)	144
Fig. (68):	Correlation of transferrin % with serum ferritin	146
Fig. (69):	Correlation of serum ferritin with GRAN	149
Fig. (70):	Correlation of serum ferritin with gestational age	(wks) 149
Fig. (71):	Correlation of serum ferritin with weight (kg)	150
Fig. (72):	ROC curve analysis of prohepcidin for discrimin between patient and control	

INTRODUCTION

Eighty-five percent of newborns with early-onset infection present within 24 hours, 5% present at 24-48 hours, and a smaller percentage of patients present within 48-72 hours. Onset is most rapid in premature neonates. Late-onset sepsis syndrome occurs at 4-90 days of life and is acquired from the caregiving environment (*Klinger et al.*, 2009).

The continuing unresolved debate over the interaction of iron and infection indicates a need for quantitative review of clinical morbidity outcomes. Iron deficiency is associated with reversible abnormalities of immune function, but it is difficult to demonstrate the severity and relevance of these in observational studies. Iron treatment has been associated with acute exacerbations of infection (van de Loggen et al., 2009).

Low serum iron level (hypoferremia) is a common response to systemic infections on generalized inflammatory disorders, developmental hypoferremia during inflammation requires hepcidin (*Nemeth et al., 2004*).

Serum pro-hepcidin is a defensin-like antimicrobial peptide, hepcidin, is part of the innate immune system and thus constitutes the first-line defense against infections. *In vivo* and *in vitro* studies have demonstrated that hepcidin is active against Gram-positive

and Gram-negative bacteria as well as yeasts. In addition to its antimicrobial activity, it acts as an iron regulatory hormone that negatively regulates intestinal iron absorption and macrophage iron release. Thus, hepcidin acts in two ways against bacteria: it reduces the amount of iron available for pathogens and it attacks them directly (*Malyszko and Mysliwiec*, 2007).

AIM OF THE STUDY

The aim of the present study is to determine serum levels of pro-hepcidin using ELISA in full-term and preterm newborns with sepsis and to determine the possible relationships between pro-hepcidin levels and serum iron and complete blood count.