Effect of Tuberculin inhalation on the lung of Guinea pigs after experimental induction of allergic asthma

Thesis

Submitted for partial fulfillment of medical doctor degree in **Internal Medicine**

By **Sylvia Talaat Kamal Abd Elsayed**MB-.- B-.- Ch-.- M-.- Sc-.

Under supervision of

Prof.__Dr.__/ Maged Mohamed Refaat

Professor of internal medicine, allergy and clinical immunology. Faculty of Medicine-Ain Shams University.

Professor Dr/Amel Ali Soliman Abo-Amer

Professor of Histology
Faculty of Medicine-Ain Shams University...

Ass..- Professor Dr/Hala Salah Abd El Kawi

Assistant Professor of Pharmacology Faculty of Medicine-Ain shams university.

Dr/ Nermine Abd Elnour Melek

Assistant Professor of internal medicine, allergy and clinical immunology. Faculty of medicine-Ain Shams University.

Dr/Eman Elsayed Ahmed

Lecturer of internal medicine—allergy and clinical immunology—. Faculty of Medicine-Ain Shams University—.

Faculty of Medicine Ain Shams University 2014

I humbly submit my sincere gratitude to GOD our creator who has guided me to every success I had in my life.

Special gratitude is offered to Prof. — Dr. — / Maged Mohamed Refaat, — Professor of Internal Medicine, — Allergy and Clinical Immunology, — Faculty of Medicine, — Ain Shams University, — for his constructive criticism, — generous help and encouragement.

Sincere appreciation is extended to **Prof..- Dr..-** / **Amel Ali Soliman,** - Professor of Histology, - Faculty of Medicine, - Ain
Shams University.

Special recognition and sincere thanks to **Dr.**.- / **Hala Salah abd elkawy**, - Assistant Professor of pharmacology, - Faculty of Medicine, - Ain Shams University, - for giving personal assistance, encouragement and valuable advice.

Special gratitude is offered to **Dr..- Nermine Abd El Nour Melek,** - Assistant Professor of Internal Medicine, - Allergy and

Clinical Immunology, - Faculty of Medicine, - Ain Shams

University for being extremely helpful to make this work succeed.

Special thanks are offered to **Dr.**.- **Eman El Sayed Ahmed**, lecturer of Internal Medicine, - Allergy and Clinical Immunology, Faculty of Medicine, - Ain Shams University.

Finally special gratitude to my family especially my mother I my husband who were very supportive to me.

Sylvia Talaat Kamal Abd Elsayed

I humbly submit my sincere gratitude to GOD our creator who has guided me to every success I had in my life.

Special gratitude is offered to Prof. Dr. / Maged Mohamed Refaat, Professor of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, for his constructive criticism, generous help and encouragement.

Sincere appreciation is extended to **Prof. Dr. / Amel Ali Soliman,** Professor of Histology, Faculty of Medicine, Ain Shams University.

Special recognition and sincere thanks to Dr. / Hala Salah abd elkawy, Assistant Professor of pharmacology, Faculty of Medicine, Ain Shams University, for giving personal assistance, encouragement and valuable advice.

Special gratitude is offered to **Dr. Nermine Abd El Nour Melek,** Assistant Professor of
Internal Medicine, Allergy and Clinical
Immunology, Faculty of Medicine, Ain

Shams University for being extremely helpful to make this work succeed.

Special thanks are offered to Dr. Eman El Sayed Ahmed, lecturer of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University.

Finally special gratitude to my family especially my mother & my husband who were very supportive to me.

Sylvia Talaat Kamal Abd Elsayed

List of Contents

Contents	Page
List of abbreviation	. <u>Ii</u>
List of tables	727272 72
iii v	
List of figures	. VI <u>vi</u>
Introduction and Aim of the work	. 1
Review of literature	<u>. 4</u>
Chapter 1:	
Bronchial Asthma and Its Immunological Basis	<u>. 4</u>

Chapter 2:
Immunological treatment of asthma
Chapter 3:
Animal Models of Allergic Asthma
Patients Materials and
methods <u>59</u>
Results
68—
Discussion
Summary and Conclusion
Recommendations
References
Arabic summary –

List of Abbreviations

ACQ : Asthma control questionnaire

AHR : Airway resistance

AMC : Acid mammalian chitinase

APCs : Antigen presenting cells

ASM : Airway smooth muscle

BAL : Broncho-alveolar lavage

BALF: Broncho-alveolar lavage fluid

BCG : Bacillus Calmette–Guérin

CCL : Chemokine (C -C motif) ligand

CCR3 : C-C chemokine receptor type 3

Cdyn : Dynamic compliance

CI 95% : 95% confidence interval

CRTH : Chemo-attractant homologous receptor

CXCL : Chemokine (C-X-C motif) ligand

cys-LTs : Cysteinyl leukotrienes

DCs : Dendritic cells

EAR : Early allergic response

EDN : Human eosinophil-derived neurotoxin

FcεRI : Fc receptor for IgE

List of Abbreviations (Cont.)

FEV1 : Forced expiratory volume in the first second

FOXP3 : Forkhead box P3

FVC : Forced vital capacity

GATA3 : GATA-binding protein 3

GM-CSF: Granulocyte-macrophage colony-stimulating

factor

List of Abbreviations (Cont.._)

H&E: Haematoxylin and eosin

HR : Histamine receptors

i--- p--- : Intraperitoneal

 $I_{\bullet \bullet} U_{\bullet \bullet}$: International unit

 $\mathbf{i}_{\bullet \bullet} \mathbf{v}_{\bullet \bullet}$: Intravenous

ICS : Inhaled corticosteroid

IFN- γ : Interferon-gamma

IgE : Immunoglobulin E

IL : Interleukin

IL-4Rα : IL-4 alpha chain receptor

 $L_{\bullet \bullet} M_{\bullet \bullet}$: Light microscopy

LABAs : Long acting beta 2 agonists

LAR : Late allergic response

LTC4 : Leukotriene C4

Mycobacteria vaccae : Mycobacteria vaccae

MAPK: Mitogen-Activated Protein Kinases

MCs : Mast cells

List of Abbreviations (Cont.)

MHC : Major histocompatibility complex

NFAT : Nuclear factor of activated T cells

NKT cells: Natural killer T cells

OVA : Ovalbumin

PAMPs: Pathogen-associated molecular patterns

PBS: Phosphate buffered saline

PEF : Peak expiratory flow

PG: Prostaglandin

PPD : Purified protein derivative

List of Abbreviations (Cont._)

RL : Pulmonary resistance

RORγt : Retinoic acid orphan receptor-γt

RT-PCR: Real- Time PCR

SCIT : Subcutaneous immunotherapy

SD : Standard deviation

SEM : Standard error of the mean

SEM : Scanning electron microscopy

SIT : Specific immunotherapy

SLIT : Sublingual immunotherapy

sRaw : Specific airway resistance

STAT6 : Signal Transducer And Activator Of

Transcription 6

TCR : T-cell receptor

List of Abbreviations (Cont.)

TGF-β: Transforming growth factor beta

Th cell: T-helper cell

TLR : Toll-like receptor

TNF: Tumor necrosis factor

Tregs : T regulatory cells

TSLP: Thymic stromal lymphopoietin

 $\mathbf{V_T}$: ————————Tidal volume

WT animal: ———Wild type animal

List of Tables

Table	Subject	Page
Table	Subject	1 agc
1	In-vivo measures: Inter-group comparisons	<u>70</u>
2	Within-group comparisons of in-vivo measures: Control group	<u>74</u>
3	Within-group comparisons of in-vivo measures: Sensitized-Untreated Group	<u>75</u>
4	Within-group comparisons of in-vivo measures: Sensitized-Tuberculin Treated Group	
5	Intergroup comparison of microscopic measures	<u>100</u>

List of Figures

Fig.	Subject	Page
1	Th cells in airways	<u>17</u>
2	Role of mast cells	<u>25</u>
3	Important innate cytokines	<u>34</u>
4	Specific allergen immunotherapy mechanism of action	<u>455</u>
5	Plethysmograph box for measuring specific airway resistance in guinea pigs	<u>64</u>
6	Recorded signals for respiratory functions transmitted from double chamber pleythysmograph	<u>65</u>
7	Mean sRaw before and after inhalation in the three study groups.	<u>77</u>
8	Mean change in sRaw in the three study groups	<u>78</u>
9	Mean percentage change in sRaw in the three study groups.	<u>79</u>
10	Mean VT before and after inhalation in the three study groups.	<u>80</u>
11	Mean change in VT in the three study groups	<u>81</u>
12	Mean percentage change in VT in the three study groups.	<u>82</u>
13	A photomicrograph of a section of a guinea pig lung of the control group	<u>85</u>

List of Figures (Cont-_-)

Fig.	Subject	Page
14	A photomicrograph of a semi thin section of a guinea pig bronchus of the control group	<u>86</u>
15	A scanning electron micrograph of the luminal surface of a pulmonary bronchus of control group	<u>87</u>
16	A scanning electron micrograph of a guinea pig lung of the control group	<u>88</u>
17	A photomicrograph of a section of a guinea pig asthmatic lung showing a part of a bronchus	<u>89</u>
18	A photomicrograph of a section of a lung of an asthmatic guinea pig	<u>90</u>
19	A photomicrograph of a section of a lung of an asthmatic guinea pig	<u>91</u>
20	A photomicrograph of a section of a lung of an asthmatic guinea pig	<u>92</u>
21	A scanning electron micrograph of a luminal surface of a pulmonary bronchus of an asthmatic guinea pig	<u>93</u>
22	A scanning electron micrograph of a luminal surface of a pulmonary bronchus of an asthmatic guinea pig	94
<u>23</u>	A scanning electron micrograph of an asthmatic guinea pig	<u>95</u>

List of Figures (Cont.)

Fig.	Subject	Page

A scanning electron micrograph of an asthmatic guinea pig

List of Figures (Cont.-)

Fig.	<u>Subject</u>	Page
24	A scanning electron micrograph of an asthmatic guinea pig lung	<u>96</u>
25	A photomicrograph of a section of guinea pig lung from the tuberculin treated group	<u>97</u>
26	A photomicrograph of a section of a guinea pig lung from the tuberculin treated group	<u>98</u>
27	A scanning electron micrograph of a guinea pig lung of the tuberculin treated group	<u>99</u>
28	Mean mast cell count in the three study groups	<u>103</u>
29	Mean eosinophil cell count in the three study groups	<u>104</u>
30	Mean thickness of interalveolar septum in the three study groups	<u>105</u>

Introduction

Asthma is a heterogeneous inflammatory disorder of the airways characterized by chronic airway inflammation, airway hyper-reactivity (AHR) and by symptoms of recurrent wheezing, __coughing and shortness of breath. __Asthma is a major public health problem, __affecting 300 million people worldwide, __and has increased considerably in prevalence over the past three decades (Wilson et al., __2006).

Clinically, ___although several distinct forms of asthma are recognized, ___the major focus of treatment and research over the past 25-few years has been on allergic asthma, ___the most common form of asthma. __Allergen-specific T helper type 2 (Th2) cells are thought to be present in the lungs of almost all patients with asthma, ___particularly patients with allergic asthma (Robinson et al, __, __1992).

Th2 cells produce cytokines that regulate the allergen-specific synthesis of immunoglobulin E (IgE), __the recruitment of eosinophils,, _the recruitment and growth of mast cells,, _and AHR,, _a cardinal feature of asthma (Holgate and Polosa,, _2008).

Also₅₂—_it has been assumed that Treg cells play an important role in controlling such—T-helper typeh-2--biased

responses both in animal models and studies in humans (Strickland et al., 2006; Gogishvili et al., 2007).

At the present, — the most effective standard antiasthmatic drugs available include inhaled β2-agonists and gluco-corticoids, — these control asthma in about 90-95% of patients, — (Caramori et al., — 2008). — The remaining 5% to 10% of asthma patients have severe disease that is difficult to control despite optimum management of co-morbid conditions and environmental triggers, — optimum therapy, — and good adherence to conventional treatment regimens (Stewart et al., — 2010).

Hence, ____there is a great need for new therapies of allergic asthma. ____ In the last few years many studies were concerned by the role of BCG in asthma management, ___ it showed promising results in animal models. ___ However, __ it showed promising still controversial. ___ Zuany-Amorim et al. __ (, 2002), stated that BCG regulates the allergic host immune responses through the induction of Treg cells, ___ rather than affecting the Th1/Th2 balance.

Based on the good results of BCG in animal models of asthma_{7,2}—the present thesis worked upon inhaled tuberculin as a new suggested therapy to asthma_{7,2}—Asthma animal model is
