ROLE OF DIAGNOSTIC IMAGING IN EARLY DETECTION OF INTRAUTERINE DOWN SYNDROME

Essay

Submitted for fulfillment of Master Degree In Diagnostic Radiology

By Walid Mohamad El-Husseiny M.B.B.CH

Under Supervision of

Prof. Dr. Sherine George Moftah

Ass. Professor of Radiodiagnosis Faculty of Medicine - Ain shams University

Dr. Amr Mahmoud Ahmed

Lecturer of Radiodiagnosis Faculty of Medicine - Ain shams University

> Faculty of Medicine Ain shams University 2011

دور التصوير التشخيصي في الاكتشاف المبكر لمتلازمة داون داخل الرحم

رسالة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من الطبيب/ وليد محمد الحسينى بكالوريوس الطب والجراحة جامعة عين شمس

تحت إشراف

أد شيرين جورج مفتاح أستاذ مساعد الأشعة التشخيصية كلية الطب - جامعة عين شمس

د. عمر و محمود أحمد مدرس الأشعة التشخيصية كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

List of Abbreviations

AC Abdominal circumference

BPD Biparietal diameter

CBS Cystathionine B synthetase

CF Cystic fibrosis
CM Cisterna magna
CPCS Choroid plexus cysts
CRL Crown rumb length
DS Down syndrome
EB Echogenic bowel
FL Femur length

FTS First Trimester Screening

GA Gestational Age

GARTF glycinamide ribonucleotide transformylase.

HL Humeral length HUIFN Human interferon

IPS Integrated prenatal screening

kHz Kilohertz

LFA-1 lymphocyte function associated antigen

MHz Megahertz

MR Magnetic resonance

MRI Magnetic resonance imaging

MVM Mild ventriculomegaly

NB Nasal bone NF Nuchal Fold

NST Nuchal skin fold thickness

NT Nuchal translucency

PAIS phosphoribosy aminoimidazole synthestase

PFKL phosphofructokinase

PRGS Phosphoribosy glycinamide synthetase

PUJO Pelvi ureteric junction obstruction

RFLPs Restriction fragment length polymorphisms

ROI Region of interest RPD Renal pelvic dilatation

List of Abbreviations (Cont.)

SD	Standard deviation
SDS	Standard deviations
SOD	Superpxide Dismutase
SSFSE	Single shot fast spin echo
T21	Trisomy 21

Trisomy 21

TCD Trans cerebellar diameter Ventricular septal defects VSDS

List of Tables

Table No.	Title	Page
1	Estimated incidence of Down syndrome	43
	among live born infants in relation to the maternal age	
2	Risk of Down syndrome live birth	47
3	Speed of sound in various materials	51
4	Standard pulse sequences for fast MR imaging of the female pelvis	62

List of Figures

Figure No.	Title	Page
1	Transverse section of the fetal head demonstrating the ventricular system	4
2	Transverse section of the fetal head at the level of the posterior horn	4
3	Mild ventriculomegaly at 22 weeks' gestation	5
4	Transverse section of the fetal head demonstrating the two thalami	6
5	Transverse section of the fetal head demonstrating the cerebral peduncles	7
6	The nuchal fold	8
7a	Longitudinal section of the fetal spine	9
7b	Transverse section of the fetal abdomen	9
8	Longitudinal section of the fetal body illustrating the diaphragm	10
9	Four-chamber view of a normal fetal heart	11
10	Echogenic focus	12
11	The aortic outflow tract	13
12	The pulmonary artery outflow tract	14
13	Transverse section of the fetal abdomen demonstrating the gall bladder	15
14	Transverse section of the fetal abdomen demonstrating echogenic bowel	16
15	Transverse section of the fetal abdomen demonstrating both kidneys and renal pelves	17
16	Anteroposterior (AP) diameter measurement of the right renal pelvis	18
17	Mild bilateral renal pelvic dilatation	19
18	Coronal section of the fetal face demonstrating the orbits	21
19	Coronal section of the fetal face demonstrating the lips and nostrils	21

Figure No.	Title	Page
20	Transverse section of the head demonstrating the tongue	22
21	Fetus at 26 weeks gestation. Coronal image of the brain	23
22	Fetus at 26 weeks gestation Coronal view, showing Both temporal lobes of the cerebral hemispheres	24
23	Fetus at 26 weeks gestation Coronal view, showing Both frontal lobes of the cerebral hemispheres.	24
24	Axial US image of a 26-week fetus showing indentation of the parieto-occipital	26
25	Axial MR images of a 26-week fetus show the parieto-occipital fissure	26
26	Sagittal MR images of a 26-week fetus show the parieto-occipital fissure	27
27	Fetus at 28 weeks gestation. axial view, showing the lateral ventricles	28
28	fetus at 26 weeks Sagittal view, showing the lateral ventricle	28
29	Fetus at 26 weeks gestation. Coronal image of a fetus	29
30	Fetus at 26 weeks gestation. Sagittal view of the fetus	30
31	Fetus at 26 weeks gestation. Sagittal image of a fetus shows the entire spinal column	30
32	Fetus at 22 weeks gestation. Oblique image of a fetus showing the trachea	31
33	Fetus at 22 weeks gestation Oblique image of the fetus showing the right and left brachiocephalic veins	32

Figure No.	Title	Page
34	Sagittal image of the fetus showing the aortic root	32
35	Coronal image of the fetus showing the main pulmonary trunk.	33
36	Fetus at 26 weeks gestation. Sagittal image of a fetus showing the thoracic descending aorta	33
37	Fetus at 28 weeks gestation. Axial image through the abdomen	33
38	Fetus at 28 weeks gestation. Axial image through the abdomen showing the fluid-filled dilated bladder	35
39	at 28 weeks gestation. Coronal image of the fetus showing bowel loops	36
40	Fetus at 28 weeks gestation. Axial image through the abdomen showing the kidneys.	36
41	Fetus at 28 weeks gestation. Axial image through the abdomen showing the liver parenchyma	37
42	Fetus at 28 weeks gestation. Axial image through the abdomen showing the hepatic veins	37
43	Fetus at 28 weeks gestation. Sagittal image through the maternal pelvis showing an intrauterine gestation with a high, posterior placenta.	38
44	Fetus at 26 weeks gestation. Sagittal image of a fetus showing the placenta	39
45	Fetus at 26 weeks gestation. Sagittal image of a fetus	39
46	Spot brightness related to echo amplitude	53

Figure No.	Title	Page
47	Principle of B-scanning using a linear array	53
48	Generation of ultrasound using piezoelectric devices	54
49	Absorption of ultrasound waves at two frequencies	55
50	Focusing of ultrasound waves on reception	57
51	Normal nasal bone ossification at 12 weeks gestation	68
52	Absent nasal bone ossification at 12 weeks gestation in a fetus with trisomy	68
53	Normal NT thickness at 12 weeks gestation	69
54	Increased NT thickness at 12 weeks gestation associated with trisomy 21	70
55	Transverse US scan of the fetal chest demonstrates a solitary echogenic intracardiac focus.	71
56	Measurements of thickened nuchal soft tissue	73
57	Fetal MR images showing thickened nuchal edema.	74
58	Fetal MR images showing bilateral short and bowed lower extremities and bilateral equinovarus	75
59	ultrasound image of a 21wks fetus showing clinodactyly. Fetal bowel that is echogenic	76
60	Ultrasound image of a 21 wks fetus showing shortened femur	76
61a,b	Fetal MR images of the upper extremities showing bilateral short upper limbs and short fingers	77

Figure No.	Title	Page
62	Transverse US image demonstrates Bilateral renal pyelectasis.	78
63	MR images of a 28 wks fetus showing bilaterally dilated renal pelvis	79
64,65,6	Ultrasound images of fetal heart at 30 wks gestation with incomplete a-v defect	80
67	Sagittal ultrasound image of a 26 fetus showing echogenic bowel	81
68,69	Axial ultrasound images of fetal head showing Choroid plexus cysts	82,83
70	Fetal MR images revealing choroid plexus cysts	83
71	Ultrasound image of a 28 wks fetus revealing mild ventriculomegaly	84
72	Fetal MR images demonstrating mild ventriculomegaly	85
73	Transverse US image of 22 wks fetal head demonstrates enlarged cisterna magna	86
74	MR image of fetal head demonstrates large cisterna magna	86
75a,b	a:plantar view of normal foot, b: plantar view of foot showing sandal gap	88
76	Transverse us image of fetal abdomen revealing duodenal atresia	88
77	MR image showing "double bubble " sign of duodenal atresia	89
78,79	Ultrasound images of 12 wks fetus showing increased nuchal translucency	90
80,81	Ultrasound images of 12 wks fetus showing 80.abscent nasal bone 81.abnormal waveform of ductus venosus	91

Figure No.	Title	Page
82,83	Ultrasound images of 16 wks fetus showing	92
	82.absent nasal bones 83.nuchal edema	
84,85	Ultrasound images of 16 wks fetus showing	92
	84.small ear 85. Hypoplasia of the middle	
	phalanx	
86,87	Ultrasound images of 12 wks fetus showing	93
	86.striking nuchal edema 87. regurgitation at	
	the level of the common atrioventricular.	
88,89	Color Doppler images of the heart showing	93
	atrioventricular septal defect and	
	hydrothorax.	
90,91	Ultrasound images of 19 wks fetus showing	94
	90. normal facial profile, 91.mild	
	Pyelectasis.	
92,93	Ultrasound images of 19 wks fetus showing	94
	92. Mild Pyelectasis 93. hyperechoic bowel.	
94,95	Ultrasound images of 19 wks fetus showing	95
	94. Double bubble sign of duodenal atresia	
	95. brachydactyly	
96,97	Duodenal atresia in a 30-week-old fetus.	96
98	Ureteropelvic junction obstruction in a 30-	97
	week-old fetus.	

List of Contents

	Page
List of Abbreviations	I
List of Tables	Ш
List of Figures	IV
Introduction and aim of work	1
Anatomy	3
Pathology	41
Technology	51
Manifestations with illustrative cases	67
Summary and conclusion	98
References	100
Arabic summary	

Introduction

Development of human embryo is a complex and evolutive process that requires accurate evaluation to detect any fetal malformation that may result in lethal or morbid outcome of pregnancy. Early and accurate antenatal diagnosis of fetal malformations and differentiation between a lethal and a non-lethal variety has important implications for the management of a pregnancy and prediction of fetal outcome (*Lee et al.*, 2002).

Down syndrome (Trisomy 21) is the most common autosomal Trisomy encountered in pregnancies that extend beyond the first trimester. Down syndrome is named after JOHN LANGDON DOWN, the first scientist to describe the pattern of congenital anomalies characterizing individuals with trisomy 21 (*Baladini and Volpe*, 2007).

Ultrasound screening in pregnancy can be seen as the offer to check the largest number of pregnancies, by the largest number of operators for simple and reproducible criteria in order to make important choices on the management of pregnancy and delivery. Most established screening programs claim high sensitivity (for low false-positive rate) for different conditions such as Down syndrome (*Baladini and Volpe 2007*).

The use of MRI was first described in pregnancy in 1983. Its initial application was for maternal and placental abnormalities. Fetal MRI was initially limited because of fetal motion artifact. In the 1990s, fetal MRI became practical because of the development of single-shot rapid acquisition sequence with refocused echoes. This high-quality T2-weighted sequence has a slice acquisition time of <1 second and essentially "freezes" fetal motion As a result, excellent fetal imaging can be obtained without maternal or fetal sedation (*Opin 2001*).

Introduction and Aim of the Work

The risks and benefits of all imaging studies that are carried out during pregnancy need to be discussed with the patient. In the case of magnetic resonance imaging (MRI) there are theoretical risks of teratogenicity, but no proven effects in humans. This study reviews safety concerns pertaining to MR examinations during pregnancy and illustrates embryonic and fetal anatomy in the first and second trimester (*Levine 2005*).

Aim of The Work

To emphasize the role of various diagnostic imaging modalities (U.S and MRI) in early detection of Down Syndrome during first and second trimesters of pregnancy to help in the decision of therapeutic abortion.

(I) Normal Anatomy of the Fetus by Ultrasound Examination

An ultrasound examination is in the unique position of being both a screening test and a diagnostic test for fetal anomalies (*Sadler*, 2004).

The majority of second trimester scans are performed at 20-22 weeks, although a more limited assessment of fetal anatomy can be made, using the transabdominal technique, from 15 weeks (*Sadler*, 2004).

I. Central nervous system:

A-The lateral ventricles:

The lateral ventricles are the easiest parts of the ventricular system to visualize with ultrasound. These are bilateral and have anterior, posterior and inferior horns. They contain the choroid plexus, which is normally apparent with ultrasound only in the posterior horn. The inferior horn is rarely seen in normal fetuses because it is lost in the echoes from the base of the skull (**Fig. 1**) (*Filly*, 1991).

The anterior horn:

The anterior horns of the lateral ventricles are visualized in the same section as that required for the BPD. The medial and lateral borders of the anterior horn lie in very close proximity at this level (*Filly*, 1991).

The posterior horn or atrium:

The posterior horn, or atrium, contains choroid that is readily identified as a rounded, hyperechoic structure. The ultrasound appearance of the posterior horn differs from the anterior horn in that it has obvious depth may give valuable information (**Fig. 1**) (*Hehr and Muenke*, 1999).