

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial Pharmacy

Preparation and Evaluation of Thermoreversible Injectable Drug Delivery Systems

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences

(Pharmaceutics)

By

Hend Mohamed Abd el-Bar Hamad

Bachelor of Pharmaceutical Sciences, 2006, Ain Shams University Master Degree in Pharmaceutics, 2011, Ain Shams University

Under the supervision of

Prof. Gehanne Abdel Samie Awad Prof. Nahed Daoud Mortada Professor of Pharmaceutics and Professor **Pharmaceutics** of and Industrial Pharmacy, Faculty of Pharmacy, Industrial Faculty of Pharmacy, Ain Shams University Pharmacy, Ain Shams University Dr. Rihab Osman Ahmed Dr. Amal youssef Mohamed Lecturer of Pharmaceutics Researcher, Head of Pharmaceutics and Lab in NODCAR and lecturer of Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Pharmaceutics in MUST University

Cairo 2014

ب مِالْمُالِكُمْ الْمُولِينِ مِنْ

لاً يُكَلِّهِ الله نَهْساً إِلاَّ وُسْعَما لَمَا مَا كَسَبَتِ وَمَلَيْما مَا كَسَبَتِ وَمَلَيْها مَا الْحُبَسَبَتِ رَبَّهَا لاَ تُوَادِدُنا إِن نَسِبِنا أَوْ وَمَلَيْهَا مَا الْحُبَسَبَتِ رَبَّهَا لاَ تُوَادِدُنا إِن نَسِبِنا أَوْ الْحَالَة مَا مَا تَهُ مَلْهَ مَلْهَ مَلْهَ مَلْهَ لَهَ مَوْلاً مَا لاَ طَافَة لَهَا مِعِ مَوْلاً مَا لاَ مَا وَمُنْهَا مَا لاَ طَافَة لَهَا مِعِ مَوْلاً مَا الْمَوْمِ الْحَالِينَ مِن فَرُلاَها مَا لاَ مَا وَمُنْها مَا لاَ مَا مَنْها مَا لاَ مَا وَمُنْها مَا لاَ مَا وَمُنْها مَالمَا مَا لاَ مَا وَمُنْها مَا لاَ مَا وَمُنْها مَا لاَ مَا مُنْها مَا لاَنْها مَالْهَا لاَنْها مَا لاَنْها مَالْهَا لاَنْها مَا لاَنْها مِلْها لاَنْها مِلْلاَها مَالْهَا مُنْها مَا لاَنْها مَالْهَا لاَنْها مِلْها مُنْها مَا لاَنْها مَالْها مَالْها مَا لاَنْها مَالْها مَا لاَنْها مَا لاَنْها مَا لاَنْها مَا لاَنْها مَالْها مُنْها مَا لاَنْها مَا لاَنْها مَا لاَنْها مَا لاَنْها مُنْها مُنْها مُنْها مُنْ الله مُنْها مُنْها مُنْها مُنْها مُنْها مُنْها مَا لاَنْها مُنْها مُ

(سوره البقره-اَية: ٢٨٦)

Acknowledgment

Praise is to **ALLAH**, the most merciful and most gracious, by the help of whom this work has been completed.

I would like to express my deepest gratitude to **Prof. Dr Nahed Daoud Mortada**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her excellent guidance, caring, patience, support and warm advices.

I am in great debt to **Prof. Dr Gehanne Abdel Samie Awad**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her constant encouragement, support, and invaluable suggestions made this work successful. She has been everything that one could want in supervisor. I deeply appreciate her valuable scientific supervision and continuous guidance.

I would like to note a special acknowledgement to **Dr Rihab Osman**, Lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of pharmacy, Ain Shams University, for her great efforts, keen supervision, valuable guidance, continuous enforcement and generous support.

I am also grateful to **Dr Amal youssef**, Researcher of Pharmaceutics, head of Pharmaceutics lab in NODCAR, and Lecturer of Pharmaceutics and Industrial Pharmacy, Faculty of pharmacy, MUST University, for her valuable guidance, support and follow up for this work.

I would like to record my thankfulness to **Prof. Dr Adel Bakeer**, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his kind cooperation in conducting the histopathological investigations incorporated in this study.

Here is my chance to thank my best friend **Akram Mostafa** for his kindness, friendship, continuous encouragement, support and understanding in all my life.

I would like to extend my deep thanks to all the staff members and all my colleagues in the Department of Pharmaceutics, **NODCAR**.

I am deeply and forever indebted to my beloved mother, father and my brother Ahmed for their support, understanding, patience, love and encouragement during my whole life.

Hend Mohamed Abdel-Bar 2014 Dedicated to my mother, father and my brother

Ahmed

List of Contents

Title	Page
List of Tables	ix
List of Figures	xii
List of Abbreviations	XX
Abstract	xxiv
General Introduction	1
Scope of Work	17
Chapter I: Preparation and Characterization of Cispla	ıtin
Chitosan/β-Glycerophosphate Thermoreversible Hydro	gels
Introduction	19
Experimental	28
Materials	28
Equipment	28
Methodology	30
Determination of Chitosan Degree of Deacetylation	30
Determination of First Derivative Spectrum of	30
N-Acetyl Glucosamine	30
Construction of Calibration Curve of N-Acetyl Glucosamine	30
Calculation of Chitosan Degree of Deacetylation	31
Preparation and Characterization of Highly Deacetylated Chitosan	32
Preparation of Highly Deacetylated Chitosan	32
Characterization of Chitosan by FT-IR	
Spectroscopy	33
Preparation of Thermoreversible Cisplatin Loaded	33
Chitosan /β-Glycerophosphate Hydrogel	33
Preparation of Plain Chitosan/β-Glycerophosphate Thermoreversible Hydrogel	33
Fourier Transform Infra-Red Spectroscopy Analysis	35

Preparation of Cisplatin Loaded Chitosan/β-	35
Glycerophosphate Thermoreversible Hydrogel	
Characterization of Cisplatin Thermoreversible	36
Chitosan /β-Glycerophosphate Hydrogel	
Determination of pH	36
Sol-to-gel Study	36
Morphological Study	37
In-vitro Cisplatin Release Study	37
Study of the Effect of pH on Cisplatin-Chitosan	42
Complexation	72
Viscosity Measurement	42
Determination of Free Cisplatin	42
Fourier Transform Infra-Red Spectroscopy	43
Analysis	43
Preparation and Characterization of pH Adjusted	
Cisplatin Chitosan / β-Glycerophosphate	43
Thermoreversible Hydrogel	
Preparation of pH Adjusted Cisplatin Loaded	
Chitosan / β-Glycerophosphate	43
Thermoreversible Hydrogel	
Characterization of pH Adjusted Cisplatin	
Chitosan/β-Glycerophosphate Thermoreversible	43
Hydrogel	
Statistical Analysis	44
Results and Discussion	45
Chitosan Degree of Deacetylation	45
First Derivative Spectrum of N-Acetyl	
Glucosamine	46
Calibration Curve of N-Acetyl Glucosamine	46
Calculation of Chitosan Degree of Deacetylation	48
Preparation and Characterization of Highly	
Deacetylated Chitosan	51
Preparation of Highly Deacetylated Chitosan	51
Characterization for HMW Chitosan by FT-IR	<i>J</i> 1
Spectroscopy	52
Special Scopy	

Preparation and Characterization of Cisplatin		
Thermoreversible Chitosan /β-Glycerophosphate	55	
Hydrogel		
Preparation of Plain Chitosan/β-	55	
Glycerophosphate Hydrogel	55	
FT-IR spectra of Chitosan/ β-Glycerophosphate	66	
Thermoreversible Hydrogels	00	
Effect of Drug Loading Method on Hydrogel	69	
Properties		
Effect on pH	69 5 0	
Effect on Gelation Temperature and Time	70 7 0	
Effect on Morphology	73	
In-vitro Cisplatin Release Study from	- 0	
Thermoreversible Chitosan/β-Glycerophosphate	78	
Hydrogels	70	
HPLC Assay of Cisplatin	78 70	
Validation of the HPLC Method	78 82	
In-vitro Drug Release Study		
Effect of pH on Cisplatin-Chitosan Complexation		
Viscosity Measurements Free Cispletin Concentration	89 90	
Free Cisplatin Concentration FT-IR studies	91	
Characterization of pH Adjusted Cisplatin	71	
Chitosan/β-Glycerophosphate Thermoreversible	93	
Hydrogel	73	
Gelation Temperature and Time	93	
<i>In-vitro</i> Release of Cisplatin	94	
Conclusions	97	
Chapter II: Preparation and Characterization of Cisple		
Microemulsion Based Autogel		
Introduction	101	
Experimental	112	
Materials	112	
	112	
Equipment		
Methodology	114	

Preparation and Characterization of Plain	114	
Microemulsion		
Construction of Pseudo-ternary Phase Diagram	114	
Characterization of Plain Microemulsions	114	
Determination of Plain Microemulsion	114	
Microstructure by Conductivity Measurement	114	
Determination of Droplet Size and Zeta	115	
Potential of Plain Microemulsions	113	
Preparation and Characterization of Cisplatin	115	
Loaded Microemulsions	113	
Preparation of Cisplatin Loaded Microemulsions	115	
Characterization of Cisplatin Loaded	116	
Microemulsions	110	
Determination of Cisplatin Loaded		
Microemulsion Microstructure by Dynamic	116	
Electric Conductivity Measurement		
Determination of Droplet Size, Polydispersity		
Index and Zeta Potential of Cisplatin	117	
Microemulsions		
Transmission Electron Microscopy of	117	
Cisplatin Microemulsion	11/	
In-vitro Release of Cisplatin from Selected	117	
Microemulsion	11/	
Preparation and Characterization of Plain	118	
Microemulsion Based Autogel	110	
Preparation of Plain Microemulsion Based	118	
Autogel	110	
Characterization of Plain Microemulsion Based	118	
Autogel	110	
Preparation and Characterization of Cisplatin		
Loaded Microemulsion Based Autogel		
Preparation of Cisplatin Loaded Microemulsion	110	
Based Autogel	119	

Characterization of Cisplatin Loaded	119
Microemulsion Based Autogel	117
Gelation Temperature and Time of Cisplatin	119
Loaded Microemulsion Based Autogel	117
Viscosity Measurements of Cisplatin Loaded	119
Microemulsion Based Autogel	117
Transmission Electron Microscopy of	
Cisplatin Loaded Microemulsion Based	120
Autogel	
Scanning Electron Microscopy of Cisplatin	120
Loaded Microemulsion Based Autogel	120
In-vitro Cisplatin Release from	120
Microemulsion Based Autogel	120
In-vitro Enzymatic Degradation	120
Physical Stability of Cisplatin Loaded	121
Microemulsion Based Autogel	121
Gravitational Stability Study	121
Freeze Thaw Stress Stability Study	122
Thermal Stability Study	122
Cytotoxicity Assessment	123
Cell Culture	123
Sulforhodamine B Cytotoxicity Assay	123
Statistical Analysis	124
Results and Discussion	126
Microemulsion Study	126
Microemulsion Pseudo-ternary Phase Diagram	126
Characterization of Plain Microemulsions	128
Conductivity Measurement	128
Droplet Size Distribution and Zeta Potential	131
of Plain Microemulsion	131
Evaluation of Cisplatin Loaded Microemulsion	134
Dynamic Conductivity Measurement	134
Droplet Size and Zeta Potential of Cisplatin	137
Microemulsions	13/

Transmission Electron Microscopy of	138
Cisplatin Microemulsion	136
In-vitro Release of Cisplatin from the Selected	139
Microemulsion	137
Cisplatin loaded Microemulsion Based Autogel	140
Study	
Plain Microemulsion Based Autogel	140
Effect of Plain Microemulsion Incorporation	141
on the Autogel Dynamic Conductivity	111
Effect of Plain Microemulsion Incorporation	142
on Autogel Gelation Temperature	1 1 1
Cisplatin Loaded Microemulsion Based Autogel	144
Characterization of Different Cisplatin Loaded	145
Microemulsions Based Autogel	
pH of Cisplatin Loaded Microemulsion Based Autogel	145
Gelation Temperature and Time of Cisplatin	
Loaded Microemulsion Based Autogel	145
Viscosity of Cisplatin Loaded Microemulsion	1.4.6
Based Autogel	146
Transmission Electron Microscopy of	
Cisplatin Loaded Microemulsion Based	148
Autogel	
Scanning Electron Microscopy of Cisplatin	149
Loaded Microemulsion Based Autogel	149
In-vitro Drug Release from Cisplatin Loaded	150
Microemulsion Based Autogel	150
In-vitro Enzymatic Degradation of Cisplatin	152
Loaded Microemulsion Based Autogel	102
Physical Stability of Cisplatin Loaded	154
Microemulsion Based Autogel	
Gravitational Stability	154
Freeze Thaw Stress Test	154
Thermal Stability	155
Cytotoxicity Assessment	163
Conclusions	168

Chapter III: Biological Studies on Selected Cisplatin Microemulsion Based Autogel

171
179
179
180
180
181
181
182
182
182
183
183
184
184
184
185
185
186
187
188
188
192
195
195
197

List of Contents

Biochemical Analysis and Histopathological	200
Examinations	200
Kidney Function Tests: Serum Creatinine and	200
Urea	200
Liver Function Tests: Serum ALT and AST	204
Histopathological Examinations	207
Conclusions	235
General Conclusion	
Summary	239
References	248
Arabic Summary	
Appendix I	
Appendix II	

List of Tables

Table No.	Title	Page
1	Gelation Temperature of Different Chitosan/β-Glycerophosphate Thermoreversible Hydrogels	57
2	Effect of Dialysis on Chitosan Solution pH and Gelation Temperature of the Corresponding Thermoreversible Hydrogels	62
3	Composition of Dialyzed Chitosan/β-Glycerophosphate Thermoreversible Hydrogels Selected for Cisplatin Incorporation	64
4	pH Values of Cisplatin Dialyzed Chitosan/β-Glycerophosphate Hydrogels Prepared by Two Different Methods	70
5	Gelation Temperature of Cisplatin Dialyzed Chitosan/β-Glycerophosphate Hydrogels Prepared by Two Different Methods	71
6	Gelation Time of Cisplatin Dialyzed Chitosan/β-Glycerophosphate Hydrogels Prepared by Two Different Methods	72
7	Recovery of Cisplatin from Phosphate Buffer Saline (pH 7.4)	81
8	Intra-day Accuracy and Precision for Cisplatin in Phosphate Buffer Saline pH 7.4	82
9	Inter-day Accuracy and Precision for Cisplatin in Phosphate Buffer Saline pH 7.4	82
10	<i>In-vitro</i> Release Data of Cisplatin from Different Chitosan/ β-Glycerophosphate Thermoreversible Hydrogels	84
11	Kinetic Release Data of Cisplatin from Chitosan/ β-Glycerophosphate Thermoreversible Hydrogels	86

12	Free Cisplatin Percent as a Function to Different pH	91
13	<i>In-vitro</i> Release Data of Cisplatin Formula F3a with Adjusted pH	94
14	Composition of Plain Microemulsion Formulae and Corresponding Conductivity Values	130
15	Particle Size Distribution and Zeta Potential of the Selected Plain Microemulsion Formulae	133
16	<i>In-vitro</i> Release Data of Cisplatin from F-M (w/o) Microemulsion in Phosphate Buffer Saline (pH 7.4)	139
17	Effect of Plain Microemulsion Incorporation on Gelation Temperature of the Chosen Chitosan/β-Glycerophosphate Autogel of F3	144
18	In-vitro Release Data of Cisplatin from Microemulsion Based Autogel	151
19	Effect of Storage on Cisplatin Loaded Microemulsion Based Autogel Physical Properties	156
20	Effect of Storage at 5°C on <i>In-vitro</i> Release Data of Cisplatin from Microemulsion Based Autogel	160
21	Effect of Storage at 30°C on <i>In-vitro</i> Release Data of Cisplatin from Microemulsion Based Autogel	161
22	Weight Percent of Cisplatin Loaded Microemulsion Based Autogel Remaining at Various Time Intervals after IP Administration	190
23	Percentage Cisplatin Remaining in Microemulsion Based Autogel after IP Injection in Rats	193
24	Change in Rats Body Weight Post IP Injection of Cisplatin Solution, Cisplatin Loaded Microemulsion Based Autogel, Plain Microemulsion Based Autogel and Normal Saline	198