Current status of the Implication of the Clinical practice pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (El-Gharbeya governorate) (Sector D)

Thesis

Submitted for partial fulfillment for the Master Degree in Internal Medicine

By Shimaa Ahmed Ibrahim Abu-Shendy

M.B.B.Ch
Faculty of Medicine – Ain Shams Unversity

Supervised by

Prof. Dr. Khaled Hussien Abou-Sief

Professor of Internal Medicine and Nephrology Faculty of Medicine Ain Shams University

Dr. Haitham Ezzat Abd El- Aziz

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2013

First and foremost, thanks to ATAT the most gracious, the most merciful for guiding me through and giving me the strength to complete this work.

I would like to acknowledge my deepest gratitude and respects to **Prof. Dr. Khaled Hussien Abou-Sief**; Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for his continues guidance and support all through my career.

I find no words by which I can express my extreme thankfulness, deep appreciation, and profound gratitude to **Dr. Haitham Ezzat Abd El-Aziz**, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University; for his major efforts in this work and guidance.

Shimaa Ahmed Ibrahim Abu- Shendy

List of Abbreviations

AC	: Activated carbon
ACE	: Angiotensin converting enzyme
\mathbf{AV}	: Arteriovenous
AVF	: Arteriovenous fistula
B2-M	: B2 microglobulins
BFR	: Blood flow rate
BMI	: Body mass index
BP	: Blood pressure
BP	: Blood pressure
BUN	: Blood Urea Nitrogen
C3a	: Complement 3a
C5a	: Complement 5a
Ca	: Calcium
CAPD	: Continuous ambulatory peritoneal dialysis
CAPR	: Cardiopulmonary recirculation
CKD	: Chronic kideny disease
CMS	: US Centers for Medicare and Medicaid Services
CPG	:Clinical practice guidelines
CRP	: C- reactive protein
CVC	: Central venous cathter
CVD	: Cardiovascular disease
DDS	: Dialysis disequilibrium syndrome
DFR	: Dialysate flow rate
DI	: Deionization

List of Abbreviations

DM	D' 1
DM	: Diabetus mellitus
DOPPS	: Dialysis outcome and practice pattern study
EBPG	: European Best Practice Guidelines
ECG	: Electrocardiogram
EKR	: Equivalent renal clearance
ERA-EDTA	: The European Renal Association-European Dialysis and Transplantation association
ESA	: Erythropoitin stimulating agent
ESRD	: End stage renal disease
ЕТО	: Ethylene oxide
GFR	: Glomerular filtration rate
GIT	: Gastrointestinal tract
GraDe	: Grades of recommendation assessment, Development and evaluation
HBV	: Hepatitis B Virus
HCV	: Hepatitis C Virus
HD	: Hemodialysis
HD	: Hemodialysis
HDF	: Hemodiafiltration
HIT	: Heparin induced thrompocytopenia
HTN	: Hypertension
IDH	: Intradialytic hypotension
K/DOQI	: Kidney Disease Outcome Quality Initiative
KOA	: The mass transfer area coefficient

List of Abbreviations

MBD	: Mineral bone disease
МОН	: Ministry of health
MRA	: Magnetic resonance angiography
Na	: Sodium
NO	: Nitric Oxide
nPCR	: Normalized protein catabolic rate
PRCA	: Pure red cell aplasia
PTA	: Percutanous transluminal angioplasty
PVC	: Polyvinyl chloride
RO	: Reverse osmosis
SRI	: Solute removal index
URR	: Urea reduction ratio
UV	: Ultraviolet

List of Tables

No	Table	Page			
1-	Comparative composition of dialysis fluid and plasma	20			
2-	Benefits from increasing dialysis frequency and in	25			
	particular nocturnal HD				
	RESULT				
1-	Gender and age distribution in the study population	81			
2-	Dialysis duration (Years) in the study population	82			
3-	Different causes of ESRD in the study population	82			
4-	Different comorbidities in the study population	83			
5-	Work status in the study population	84			
6-	Dependency status in the study population	86			
7-	Frequency of HD sessions/week in the study population	87			
8-	Duration of HD session in the study population	88			
9-	URR in the study population	89			
10-	Status of dry weight and interdialytic weight gain	89			
11-	Sponsoring status in the study population	90			
12-	Types of vascular access in the study population	91			
13-	Frequency of access failure in the study population	92			
14-	Levels of Hemoglobin during the last 6 months	93			
15-	Frequency of blood transfusion in the study population	94			
16-	ESA types and doses in the study population	95			
17-	History of iron and vitamins use in the study population	96			
18-	Different types of phosphorus binders used by the study	97			
	population				
19-	Types of complications during HD sessions in the study	98			
	population				
20-	Viral status in the study population	99			
21-	HCV isolation in the study population	100			
22-	Criteria of dialyzer used in the study population	100			
23-	Criteria of dialysate used in the study population	101			
24-	Use of anticoagulation in the study population	103			

List of Figures

No	Figure	Page		
Result				
1-	Gender and age distribution in the study population	81		
2-	Different causes of ESRD in the study population	83		
3-	Different comorbidities in the study population	84		
4-	Work status in the study population	85		
5-	Dependency status in the study population	86		
6-	Frequency of HD sessions/week in the study population	87		
7-	Duration of HD session in the study population	88		
8-	Sponsoring status in the study population	90		
9-	Types of vascular access in the study population	91		
10-	Frequency of access failure in the study population	92		
11-	Levels of Hemoglobin during the last 6 months	93		
12-	Frequency of blood transfusion in the study population	94		
13-	ESA types and doses in the study population	95		
14-	Different types of phosphorus binders used by the study	97		
	population			
15-	Types of complications during HD sessions in the study	98		
	population			
16-	Viral status in the study population	99		
17-	Criteria of dialysate used in the study population	102		
18-	Use of anticoagulation in the study population	103		

Contents

Subject	Page
Introduction	
Aim of the work	3
Chapter 1: Hemodialysis Prescreption	4
Chapter 2: Complications related to hemodialysis	
Chapter 3: Hemodialysis In Egypt	
Chapter 4: Guidelines for management of hemodialysis patients	50
Patients and Methods	
Results	
Discussion	
Summary	
Recommendations	
References	
Arabic Summary	

Introduction

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate (*Eknoyan and Agodoa*,2002).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron*, 1999).

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure (*Afifi, 1999*).

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services (*Ahmed et al.*, 1999).

AIM OF THE WORK

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

Chapter (1):

HEMODIALYSIS PRESCREPTION

Introduction:

End-stage renal disease (ESRD) is the stage reached by chronic renal diseases in which kidneys function is irreversibly lower than 15% of normal function. ESRD is fatal unless some kind of renal replacement is offered (dialysis or kidney transplantation). Worldwide there is a shortage of organs to transplant and new cases of ESRD are increasing rapidly, making hemodialysis (HD) the most used form of renal replacement (*Abouna et al.*,2008).

Etiology of and Risk Factors for CKD

Major risk factors for development and progression of CKD include diabetes, hypertension, older age, and being African American. Nearly 45% of incident kidney failure is attributed to diabetes and another 20% is attributed to chronic hypertension. Other less common but important causes include primary glomerulonephritis, lupus, and polycystic kidney disease (*U.S. Renal Data System*, 2009).

Reduced kidney function is associated with poorer psychosocial functioning, higher anxiety, higher distress, decreased sense of well-being, higher depression, and negative health perception. Evidence is emerging that cognitive impairment, delirium and depression are very common in patients with kidney disease. All of these conditions are associated with prolonged hospitalization and an increased risk of mortality (*McQuillan and Jassal, 2010*).

Risk factors:

Age

The estimated prevalence of chronic kidney disease (CKD) stages 3-5 varies by age and gender (based on extrapolation of patients with CKD amongst those tested for kidney function in primary care12). In the 18 to 25 age group the prevalence is less than 1%, this increases to more than 40% in the 85 and over age group (*Stevens et al.*, 2007).

Gender

The prevalence of CKD is higher in women compared to men in most population based studies (*Zhang and Rothenbacher*, 2008).

• Inheritance of kidney disease

A recent paper developing a risk predictor for chronic kidney disease estimated that having a family history of kidney disease conferred an increased risk of developing moderate to severe CKD.

A number of inherited conditions are associated with kidney disease; these include polycystic kidney disease, medullary sponge kidney, vesico-ureteric reflux and Von Hippel Lindau disease. Kidney disease is also associated with congenital syndromes e.g. Alports Syndrome and Bartters syndrome (*The Renal Association*. *UK Renal Registry Report* 2010).

• Socio-economic status

Socially deprived people have a higher incidence and prevalence of CKD in developed countries, though the magnitude of the effect varies between countries (*White et al.*, 2010).

Hypertension

Several studies have shown that hypertension is a risk factor for CKD. More recently a UK based study indicated that the risk of developing moderate to severe CKD (stages 3b, 4 and 5) increase in those being treated for hypertension. In both females and males this was about two and a half times the risk (*Hippisley-Cox and Coupland*, 2010).

Diabetes mellitus

Several studies have indicated that diabetes is associated with a significantly increased risk for CKD. More recently a UK based study indicated that diabetes increased the risk of developing moderate to severe CKD (stages 3b, 4 and 5) (*Hippisley-Cox and Coupland*, 2010).

In women the risk was about eight times higher and in men over twelve times higher compared to those without diabetes. Diabetic nephropathy is a renal complication of diabetes mellitus. Diabetes is the most common cause of ESRD requiring renal replacement therapy in the UK (*The Renal Association. UK Renal Registry Report, 2010*).