Endovascular Balloon Angioplasty in Management of Infragenicular Critical Lower Limb Ischemia

Thesis

Submitted for partial fulfillment of M.D degree in vascular surgery

By

Mohamed Mahmoud Mohamed Zaki Ali

M.B.BCh., M.Sc of general surgery, MRCS

Supervised by

Prof. Dr. Tarek Ahmed Abdelazim

Professor of general and vascular surgery Faculty of medicine-Ain Shams University

Prof. Dr. Wagih Fawzy Abdelmalek

Professor of general and vascular surgery Faculty of medicine-Ain Shams University

Dr. Sherif Mohamed Essam Eldin

Assistant professor of general and vascular surgery Faculty of medicine-Ain Shams University

Dr. Atef Abdelhameed Desoki

Lecturer of general and vascular surgery Faculty of medicine-Ain Shams University

Faculty of Medicine - Ain Shams University 2014

Acknowledgement

D would like to thank Allah; the most merciful and giving for all his blessings. Twould like to convey my deepest gratitude and respect for my professors and tutors for their continuous mentoring and quidance; namely Professor Dr. Carek Abdelazim, Brofessor Dr. Wagih Jawzy, Brofessor Dr, Sherif Essam, Dr Atef Abdelhamid and Professor Tr. Sherif Sultan. Twould also like to attribute my success and progress to my wife; S couldn't have done it without her support and sacrifices. Twould inevitably thank my parents for their lifetime counseling and encouragement; none of my achievements would have been attained if it weren't for them. They have been and will always be my paradigm and the figure ∞ will relentlously aspire to mimic. And finally, \infty would like to dedicate this work to my children, and hope that \infty would always make them proud and that one day it would be a motive for them to excel

بنن المالية المراكبة المراكبة

صَيِّكَ قَالله العَظِيْمُ

Table of Contents

Title	Page
Introduction	1
Anatomy of the Infra-Genicular arterial System	4
Pathophysiology of Critical Limb Ischemia	33
Diagnosis of Critical Limb Ischemia	59
Management of Critical Limb Ischemia	95
Patients and Methods	134
Results	146
Discussion	181
Conclusion	194
References	197
Arabic Summary	211

List of Abbreviations

ACCF	American College of Cardiology Foundation
AHA	American Heart Association
AMS	Application of Absorbable Metal Stents
BASIL	Bypass versus Angioplasty in Severe Ischemia
DASIL	of the Leg
BMS	Bare Metal Stents
CAD	Coronary Artery Disease
CFA	Common Femoral artery
CLI	Critical Limb Ischemia
CSS	Churg-Strauss syndrome
CTA	CT Angiography
DEB	Drug eluting balloons
DES	Rug Eluting Stents
DSA	Digital Subtraction Angiography
GCA	Giant cell arteritis
HS	High significance
IC	Intermittent Claudication
IPC	Intermittent Pneumatic Compression
KD	Kawsaki Disease
LS	Low significance
MRA	Magnetic Resonance Angiography
NS	Non Significant
PAD	Peripheral Arterial Disease
PAN	Polyarteritis Nodosa
PTA	Percutaneous Trans-luminal angioplasty
PTA	Percutaneous Transluminal Angioplasty
RCT	Randomized Controlled Trial
RP	Raynaud's Phenomenon
SD	Standard Deviation
SFA	Superficial Femoral Artery
TA	Takayasu Arteritis

TAO	Thrombangitis Obliterans
TASC	Trans Atlantic Inter-Society Consensus
TBI	Toe/Brachial Pressure Index
TIA	Transient Ischemic Attacks
V.A.C	Vacuum assisted wound closure
WG	Wegener granulomatosis

List of Figures

Figure	Title	Page
Figure 1	Branches and Relations of the Popleteal Artery, posterior aspect of the knee	7
Figure 2	Anastomosis Around the Knee	10
Figure 3	Anterior Tibial Artery Course and relations, anterolateral Part of the Leg	13
Figure 4	Anterior Tibial Artery Course and Relations, Transverse section in the Leg 4 cm below the knee joint	16
Figure 5	Course and Relations Of Dorsalis Pedis Artery	18
Figure 6	Branches of Dorsalis Pedis Artery	20
Figure 7	Posterior Tibial Artery Course and Relations in the Leg	22
Figure 8	Posterior Tibial Artery Course and Relations in the ankle	23
Figure 9	Peroneal Artery, Posterolateral aspect of the leg	28
Figure 10	Plantar Arch as seen from the sole of the foot	32
Figure 11	Prevalence of peripheral arterial disease by age and gender in adults 40 years and older, United States, 1999–2000 (n = 2174)	36
Figure 12	TASC classification of femoral popliteal lesions	40
Figure 13	Risk Factors for CLI with Odds ratio	46
Figure 14	Approximate odds ratios for risk factors for symptomatic peripheral arterial disease	47
Figure	Ischemic Ulcer of the toes	63

15		
Figure 16	Ischemic Gangerene of the hallux	67
Figure 17	Correlation of ABPI and Toe pressures with ulcer healing	73
Figure 18	Duplex categories of peripheral artery stenosis based on velocity spectral waveform interpretation. EDV, end-diastolic velocity; PSV, peak systolic velocity.	80
Figure 19	Angiography images vs. duplex images of the right leg in the same patient	81
Figure 20	Pathogenesis of Contrast Induced Nephrotoxicity	91
Figure 21	Flow chart displaying management of Critical Limb Ischemia due to infragenicular disease as adopted by our study	97
Figure 22	Artassist Device	114
Figure 23	Angioplasty Concept	120
Figure 24	Stenosis of the proximal anterior tibial artery in a patient with digital gangrene successfully revascularised by PTA	121
Figure 25	Pseudoaneurysm thrombin injection. Duplex ultrasound of a femoral pseudoaneurysm	123
Figure 26	Foot and ankle arterial angiosome represented as a topographic map divided into five territories, provided by three main arteries and their branches as shown in the right foot and the left foot	132
Figure	Cool Excimer Laser Emmition Device,	141

27	Spectranetics, Colorado Springs	
Figure 28	V.A.C. negative suction therapy applied over an infected toe amputation stump using black foam	142
Figure29	KCI V.A.C (Kinetic Concepts, Inc., San Antonio, Texas, United States)	143
Figure 30	RENESYS GO V.A.C. (Smith & Nephew, Inc. St. Petersburg, Florida, United States)	143
Figure 31	Gender difference in patients in conventional PTA group	150
Figure 32	Graphic representation of preoperative co-morbidities and risk factors in Conventional PTA group	150
Figure 33	Gender difference in patients in Laser group	152
Figure 34	Graphic representation of preoperative co-morbidities and risk factors in Laser group	152
Figure 35	Graphic representation of lab data among Conventional PTA group	154
Figure 36	Graphic representation of lab data among Laser group	155
Figure 37	Rutherford Category preoperatively in Conventional PTA group	156
Figure 38	Preoperative Rutherford Category in Laser group	158
Figure 39	Piechart showing number of stenting cases in Conventional PTA	159
Figure 40	Piechart showing number of stenting cases in Laser	160
Figure 41	Postoperative Rutherford Category in Conventional PTA group	162
Figure	Postoperative Rutherford Category in	164

42	Laser group	
Figure 43	Graphic presentation of Immediate and Sustained Hemodynamic Improvement among Conventional group	166
Figure 44	Graphic presentation of Immediate and Sustained Hemodynamic Improvement among Laser group	167
Figure 45	Graphic representation of the age difference in both groups	169
Figure 46	Graphic representation of the incidence of hyperfibrinogenemia as a risk factor in both groups	170
Figure 47	Graphic representation of the degree of stenosis and number of total occlusions in patients of both groups	172
Figure 48	Graphic representation of minor amputation rates in the 2 groups	174
Figure 49	Graphic representation of procedure related adverse effects in the 2 groups	176
Figure 50	Graphic representation of long term follow up criteria differences between the 2 groups	177
Figure 51	Infected forefoot with gangrenous big toe	178
Figure 52	Emergency Trans-metatarsal amputation for drainage	179
Figure 53	A- CT angiogram and B -3D reconstruction of the tibial vessels	179
Figure 54	V.A.C. therary applied to the wound	180
Figure 55	Wound progress after revascularization and with V.A.C. therapy	180
Figure 56	Kaplan-Meier table for Comparison between the two study groups as regard	186

	mean time for binary re-stenosis	
Figure 57	Kaplan-Meier table for Comparison between the two study groups as regard mean time for amputation	187
Figure 58	Graphic representation for the correlation between the need for stenting in total occlusion and in stenosis in conventional PTA group	190
Figure 59	Graphic representation for the correlation between the need for stenting in total occlusion and in stenosis in Laser group	192
Figure 60	Graphic representation for the relation between the presence of a distal runoff and the occurance of binary restenosis in the whole study population	203

List of Tables

Table	Title	Page
Table 1	Classification Schemes for Peripheral Arterial Disease	38
Table 2	TASC II Guidelines for Femoro-popleteal lesions	39
Table 3	Differential Diagnosis of Ischemic Ulcer	63
Table 4	Diabetic Foot Risk Classifications	64
Table 5	Meggitt-Wagner Classification of Diabetic Foot Ulcers	65
Table 6	University of Texas Wound Classification System	66
Table 7	Clinical Diagnosis of CLI	69
Table 8	Pulse Force Grading	7 1
Table 9	Potential role of the toe-brachial index (TBI) and absolute toe pressures	74
Table 10	Typical Segmental Systolic Arterial Pressures (mm Hg)	75
Table 11	Sites of disagreement observed on comparing duplex imaging to catheter angiography	79
Table 12	Comparison between DSA, MRA and CTA	82
Table 13	Comparison between DSA, MRA and CTA	94
Table 14	Description of personal and medical data (risk factors) among Conventional group	149
Table 15	Description of personal and medical data (risk factors) among Laser group	151
Table 16	Description of lab data among Conventional PTA group	153
Table 17	Description of lab data among Laser group	154

Table 18	Description of preoperative lesion	155
Table 10	characteristics among Conventional PTA group	155
Table 19	Description of preoperative lesion	157
	characteristics among Laser group Description of operative procedures done	
Table 20	among Conventional PTA group	158
Table 21	Description of operative procedures done among Laser group	159
	Description of immediate postoperative	
Table 22	lesion characteristics and outcome among	161
	Conventional PTA group Description of immediate postoperative	
Table 23	lesion characteristics and outcome among	163
	Laser group	
Table 24	Description of time to BS, TLR, major	165
1 avic 24	amputation, and MACE among Conventional group	103
	Description of Immediate and Sustained	
Table 25	Hemodynamic Improvement among Conventional group	165
T-11-26	Description of time to BS, TLR, major	166
Table 26	amputation, and MACE among laser group	166
	Description of Immediate and Sustained	
Table 27	Hemodynamic Improvement among laser	167
	group Comparison between two study groups	
Table 28	(conventional and laser) as regard personal	168
	and medical data (risk factors)	
Table 29	Comparison between two study groups as regard Preoperative investigations	169
Table 30	Comparison between two study groups as	171
Table 30	regard preoperative lesion characteristics	1/1

Table 31	Comparison between two study groups as regard operative procedures done	172
Table 32	Comparison between two study groups as regard postoperative lesion characteristics	173
Table 33	Comparison between two study groups as regard Immediate and Sustained Hemodynamic Improvement	175
Table 34	Comparison between two study groups as regard time to BS, TLR, TER, major amputation, MACE and RIP	177
Table 35	Time to Binary Re-stenosis in bothe study groups	185
Table 36	Time to major amputation in both study groups	186
Table 37	Comparison between degree of stenosis and technical success among conventional PTA group	188
Table 38	Comparison between degree of stenosis and technical success among laser group	189
Table 39	Comparison between presence of total occlusion and the need for stenting among conventional PTA group	189
Table 40	Comparison between presence of total occlusion and the need for stenting among laser group	190
Table 41	Comparison between presence of a runoff and each of technical success and binary stenosis among conventional group	192
Table 42	Comparison between presence of a runoff and each of technical success and binary stenosis among Laser group	193

Introduction

Critical limb ischemia is associated with high rates of limb loss and mortality. Within 6 months of presentation with CLI, ≥25% of patients will require major amputation. An estimated 250,000 major amputations are performed annually in the United States and Europe, resulting in a significant socioeconomic burden and severe reduction in quality of life indicators. Published rates of mortality for CLI approach 25% at 1 year and >50% at 5 years, exceeding rates observed in any other form of occlusive arterial disease (*Gagan et al.*, 2013).

Interventional therapy for tibial arteries is a key part of the vascular specialist armamentarium. Tibial artery interventional therapy has been proven to lead to limb salvage with low morbidity and mortality in patients with critical limb ischemia and should be used as a first line treatment mode in the majority of patients, especially in those with significant medical co morbidities (*Sean*, 2009).

Among revascularization methods for critical lower limb ischemia (CLI), surgical bypass has been regarded as the gold standard, with better anatomical and clinical durability. However, patients with CLI are often aged and not optimal candidates for surgical bypass due to medical co-morbidities with increasing perioperative mortality rates and a poor autogeneous conduit. As an alternative method of revascularization, infrapopliteal angioplasty is preferred by patients with visible stumps, good runoff of distal outflow vessels or high surgical risk. However, it had been regarded as an inferior treatment option compared to surgical bypass due to bulky catheters, lack of low caliber wires and general lack of