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SUMMARY

In real-word applications, training data are not always complete.
Some of these data may be incomplete or missing and others may be
uncertain or ambiguous. First of all, one of the simplest and most realistic
manners for representing incomplete or missing data is the interval
representation, this means that the inputs are given by intervals instead
of real numbers. Two approaches have been proposed before in [3], [13]
to solve such problems. In the first approach [3], an architecture of
interval neural networks and a learning algorithm as an extension of
standard ~ BP(Back-Propagation) algorithm have been proposed.
However, in [3], a very complicated cost function was used in the
learning algorithm, and the algorithm was applied only to the disjoint
classes, and it had not been tested using overlapping classes. In this work,
we have implemented the same algorithm of [3] for interval inputs, but
using - a simple cost function, very similar to that used in the standard BP
algorithm [1, 2]. Using such simple cost function, we have obtained the
same results asin [3]. Moreover, we have tested the developed algorithm
using overlapping classes, and the testing results indicated that the
algorithm is useful only for disjoint classes and it is not good for
overlapping classes. In the second approach 113], a neural networks, that
can utilize, the expert knowledge represented by fuzzy if-then rules as
well as the numerical data, in the learning have been proposed. Although
the proposed algorithm in [13] was dealing mainiy with fuzzy numbers as
inputs, the most important parts of fuzzy set theorem, resolution
principle using a-cuts and the extension principle were not mentioned or
studied in [13]. Moreover, the o-cuts were not introduced in the
developed algorithm of [13]. Thus, in the present work, in the second
approach, we have developed using the same algorithm in [13], we have
studied in details, the concepts of a-cuts, resolution principle and the

- extension principle. On the other hand, we introduce o-cuts explicitly in

our implementation. The testing results indicated that the oi-cuts have a
great influence on the output separation regions. Testing results
indicated also that the developed algorithm has a very good classification
capability for separating the overlapping fuzzy input data.
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CHAPTER 1
INTRCDUCTION
1.1 Introduction '

Recently, interest in neural computation has been growing
exponentially, since neural networks hold the promise of solving
problems that proven to be extremely difficult for traditional digital
computers. Not only neural networks are parallel computing devices
and therefore fast, but also they are cable of learning by example.

One of the most significant development in the area of neural
networks is the backpropagation (BP) learning algorithm [1, 2]. Its
ability to fit complex, high-dimensional functions on the basis of
simple training data has led to it being applied to a wide variety of
problems in several areas including classification systems. The BP
algorithm provides an easy and elegant way to train neural networks. It
is mainly an iterative gradient algorithm designed to minimize the
mean-squared error between the desired output and the actual output
for a particular input to the network. Despite of the fact that the BP
algorithm has been used as the learning algorithm successfully in many
applications, there are two issues of concern need to be solved. The first
is the possibility of being trapped at alocal minimum in training. The
second, the convergence rate is typically too slow even if learning can be
achieved. A very long time is required to train large sized network
structures and data sets. So, to overcome this problem, interval neural
networks had been proposed in [3]. These interval neural networks in the
present work are characterized by interval input vectors and interval
output vectors. This means that the input and output data are given by
intervals instead of real numbers.

1.2 Pzttern Recognition

Pattern recognition is a search for structure in data, so the pattern
recognition algorithms are often classified as either parametric or non-
parametric [38]. For some classification tasks, pattern categories are
known a priori to be characterized by a set of parameters. A parametric
approach is to define the discriminant function by a class of probability
densities defined by a relatively small number of parameters.




L Rre—edy -

1.2.1 Configuration of the Pattern Xecognition System

1.2.1.1 'I'ree phases in pattern recognition

In pattern recognition, we can divide an entire task into three
phases: data acquisition, data preprocessing, and decision classification,
as shown in Figure 1.1. .

Phase I Phase 11 Phase III Class
Physical

data acquisition data preprocessing decision classification ——
variables x(r) XN

Figure 1.1: Conceptual representation of a pattern recognition problem

In the data acquisition phase, analog data from the physical world
are gathered through a transducer and converted to digital format
suitable for computer processing. In this stage, the physical variables are
converted into a set of measured data, indicated in the Figure by electric
signals, x(r), if the physical variables are sound (or light intensity) and
the transducer is a microphone (or photocells). The measured data are
then used as the input to the second phase (data preprocessing) and
grouped into a set of characteristic feature (xy) as output. The third
phase is actually a classifier which is in the form of a set of decision
functions. With this set of features (xy) tue object may be classified.
Figure 1.2 is a schematic diagram of an actual aerial multispectral
scanner and -data analysis system. Thesetof ' ‘aat B, C,and D are in
the pattern space, feature space, and classification space, respectively.

Pattern Feature classification
Data ' space space space
“Acquisition A : B C D
I data preprocessing feature extraction classification | ——

A Preprocessing

Figure 1.2: multispectral scanner and data analysis system [38]




1.3 Comparison between neural networks classifier and other

conventional classifiers:

It useful to compare the similarities and difference between the
classification using neural networks (NNs) and other classifiers. Multi-
layer perceptron (MLP) classifiers with continuous valued inputs and
trained- with the backpropagation algorithm can perform as well as and
some better than conventional classifiers as Bayesian -calssifier,
quadratic Gaussion classifier and K-nearest neighbor (K-NN) classifier
see [39]. From the results of experiments in [39], the MLP classifier using
BP algorithm for training NNs, the convergence time and also the
percentage error rate are less than other conventional classifiers.
Moreover the performance of MLP classifier is the best than other
conventional classifiers. ' |

1.4 Training data in neural networks

The neural networks model is capable of handling a real numbers
of input features presented in quantitative form, where an input feature
is either present or absent and each pattern belongs to either one class or
another. They do not consider cases where an input feature may possess a
property with a certain degree of confidence, or where a pattern may
belong to more than one class with a finite degree of “belongingness”. But
in real-world applications, training data are not always complete. Some
oh these data may be incomplete or missing and others may be uncertain

‘or ambiguous. So, the simplest and most realistic manners for
representing incomplete or missing data is the interval representation,
this mean that the input features are given by intervals instead of real
numbers. So, for handling interval data in neural networks, the
backpropagation algorithm in [1, 2], was extended to the case of interval
input vectors [3]. In conventional classification problems, all input values
of each sample are completely known and represented by a real vector.
In many applications tasks of neural networks, the ability to deal with
missing or uncertain input is crucial [4]. The interval neural networks
have the highest fitting ability for training data and the highest
generalization ability to new interval input vector.




