Fragile X Mental Retardation 1 Gene and Metabolic Biomarkers in Autism and Fragile X Syndrome

Thesis Submitted for Fulfillment of M.D. Degree in Medical Biochemistry and Molecular Biology

Presented By

Rehab Mohamed Osama Khalil

Msc of Medical Biochemistry, Faculty of Medicine, Cairo University

Under Supervision of

Prof. Dr. Hazem Mahmoud Atta

Prof.Dr. Nagwa Abd El Meguid

Professor of

Professor of Medical Biochemistry
and Molecular Biology
Faculty of Medicine
Cairo University

Human Genetics
National Research Center

Prof.Dr. Laila Ahmed Rashed

Professor of Medical Biochemistry and Molecular Biology
Faculty of Medicine
Cairo University

Dr Amr Sobhy Gouda

Associate Professor of Medical Biochemistry and

Molecular Biology and Head of Biochemical Genetics Department

National Research Center

Faculty of Medicine

Cairo University

2012

ABSTRACT

Fragile X is the most common single gene cause of autism, responsible for 2% to 6% of all cases of autism, Approximately 30% of males with FXS have full autism. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. The present study aimed at detection of molecular and neurobiological similarities between FXS and ASD. Also it aimed at detection of certain metabolic biomarkers that could be specific to autism, Fragile X. The present study included 4 groups of subjects, 2 diseased groups (20 males patients with Autism and 20 males Fragile X syndrome) and 2 control groups (20 Normal healthy males controls and 20 Down Syndrome males patients). The present study concluded that low serotonin levels was exclusively and unique to autistic patients and it can be consider as a metabolic marker for autism. Also we found that autism and FXS share neurobiological similarities as GABA was significantly high in both disorders than normal control children, meanwhile it was specific to Autism and Fragile X Syndrome as GABA level was not high in D.S. On the contrary Down Syndrome showed lower (non significant) GABA levels than normal healthy children. Regarding Glutamate, it was high in the 3 disorders but with the highest levels in Autism followed by Fragile X and Down Syndrome, respectively. The present study didn't find a significant difference between autism and controls regarding CGG repeats numbers.

Key words:

Autism

Fragile X

GABA –Serotonin- Glutamate

<u>Acknowledgment</u>

First and foremost, thanks to **ALLAH**, who is the most beneficent and most merciful.

I wish to express my sincere thanks and gratitude to Professor Doctor Hazem Mahmoud Atta, Professor Of Medical Biochemistry and Molecular Biology, Faculty Of Medicine, Cairo University for his valuable help and experience throughout this study.

I had the honor to accomplish my work under the supervision of Professor Doctor Nagwa Abd El Megiud , Professor Of Human Genetics , Research On Children With Special Needs Department, National Research Center. I am really indebted to her unlimited support, extensive experience and planning to the present study

I also wish to express my deep thanks to doctor Laila Ahmed Rashed, Professor Of Medical Biochemistry and Molecular Biology, Faculty Of Medicine, Cairo University for her valuable help and wise guidance.

I would like to express my sincere thanks to doctor **Amr Gouda**, Associate Professor of Biochemistry and Head of Biochemical Genetics Department, National Research Center for his valuable advice and help.

I am really indebted to Dr Adel Freeg Hashish, Researcher of Biochemistry, Research on children with special needs Department, National Research Center for his continuous help and support.

I would like to express my sincere thanks to **Dr Rasha Samir El Mahdy** Associate Research of Biochemistry, Research on Children with

Special Needs Department, National Research Center for her kind help
and advice.

I would like to express my deep thanks to all the members of Biochemistry Department, Cairo University and members of Children with Special Needs Department, National Research Center.

No words can express my deepest thanks and appreciation to my family for their continuous support and outstanding encouragement during this work.

Contents

		Page
List of Tables		I
List of Figures		III
List of Abbreviations		V
Introduction &Aim of the work		- 1-4
Review of Literature		5-103
Pervasive Developmental Disorders	- 5-21	
Autistic Disorder	22-4	4
Fragile X Syndrome	45-6	8
Metabolic Biomarkers	69-1	03
Subjects and Methods		104-120
Results		121-135
Discussion		136-160
Summary and Conclusions		161-164
Recommendations		165
References		166-205
Appendix		a,b,c
Arabic Summary		-

List of Tables

Table No	Table Name	Page No
Table 1	Autism Diagnostic Interview Revised (ADI-R) for	122
	Autistic Children	
Table 2	Childhood Autism Rating Scale (CARS) of Autistic Children	123
Table 3	Hagerman Checklist for Fragile X patients	124
Table 4	Mean GABA Levels in Different Studied Groups	125
Table 5	Comparison of GABA between Different Studied Groups	126
Table 6	Mean Glutamate Levels in Different Studied Groups	127
Table 7	Comparison of Glutamate between Different Studied Groups	128
Table 8	Mean Serotonin Levels in Different Studied Groups	129
Table 9	Comparison of Serotonin between Different Studied Groups	130
Table 10	Comparison between Mild – Moderate and severe autism regarding neurotransmitters assayed	131
Table 11	Comparison between Fragile X patients with and without autistic features regarding neurotransmitters assayed	132

Table 12	Correlation between Glutamate ,GABA and Serotonin in autistic children	133
Table 13	Correlation between Serotonin and GABA in autistic children	133
Table 14	Correlation between Glutamate and 2 other nneurotransmitters (GABA and Serotonin) in Fragile X children	133
Table 15	Correlation between Serotonin and GABA in Fragile X Children	134

List of Figures

Figure No	Figure Name	Page no
Figure 1	Rett syndrome with the characteristic hand stereotypes	10
Figure 2	Replicated findings of linkage, Genome wide association, copy number variation and candidate gene studies in autism	27
Figure 3	Autism candidate genes	29
Figure 4	Behavioral and cognitive phenotype of fragile x syndrome	45
Figure 5	Children from different ethnic groups have similar characteristics of fragile x syndrome.	47
Figure 6	Phenotypes of Fragile x according to the number of CGG repeats	50
Figure 7	Relation of FMRP and mRNA in FXS	52
Figure 8	Photograph and pedigree of a family in which the premutation and the full mutation have affected 4 generations	53
Figure 9	Molecular overlap between autism and fragile x syndrome	62
Figure 10	Prader-Willi Phenotype of fragile x syndrome	66
Figure 11	Molecular machinery of a simplified mammalian serotonin release site	72
Figure 12	Glutamatergic Neurotransmission System	76

Figure 13	Synthesis of γ-aminobutyric acid (GABA) from glutamate	81
Figure 14	Mass Spectrometry /Mass Spectrometry of glutamate	116
Figure 15	Mean GABA levels in different studied groups	125
Figure 16	Mean Glutamate levels in different studied groups	127
Figure 17	Mean Serotonin levels in different studied groups	129
Figure 18 a	FMR 1 gene analysis in autistic children	134
Figure 18 b	FMR 1 gene analysis in autistic children	135

List of Abbreviations

ABC	Autism Behavior Checklist
ABA	Applied Behavior Analysis
ACC	Anterior Cingulate Cortex
ACh	Acetylcholine
Ach E	Acetylcholine Esterase
AGC1	Aspartate/Glutamate carrier
AMPA	α-amino-3-hydroxy-5-methyl-4-
	isoxazolepropionic acid
ADHD	Attention Deficit Hyperactive Disorder
ADI-R	Autism Diagnostic Interview, Revised
ADOS	Autism Diagnostic Observation Schedule
APA	American Psychiatric Association
AD	Autistic Disorder
ASDs	Autism Spectrum Disorders
AS P	Aspargine
СО	Carbon Monoxide
СНАТ	Checklist for Autism in Toddlers
CARS	Childhood Autism Rating Scale
CDD	Childhood Disintegrative Disorder
CSN	Children with Special Needs
CY-BOCS	Children's Yale-Brown Obsessive Compulsive

	Scale
CAM	Complementary and Alternative Medical
CGH	Comparative Genomic Hybridization
CNTNAP2	Contactin-Associated protein-like 2
CNV	Copy Number Variation
CYFIP1	Cytoplasmic FMR1 Interacting Protein
DAN	Defeat Autism Now
DHCR7	Dehydrocholesterol Reductase
DSM-IV	Diagnostic and Statistical Manual of Mental Disorders - Fourth Edition
DA	Dopamine
D.S	Down Syndrome
ESI	Electro Spray Ionization
ECD	Electrochemical Detection
EN2	Engrailed 2 Gene
ELISA	Enzyme-linked Immunosorbent Assay
EDTA	Ethylenediaminetetraacetic Acid
ERPs	Event Related Potentials
EAAT 1	Excitatory Amino Acid Transporter 1
FISH	Fluorescent In-situ Hybridization

FMR	Fragile X Mental Retardation
FMRP	Fragile X mental Retardation Protein
FX DNA	Fragile X DNA
FXS	Fragile X syndrome
FXTAS	Fragile X-Associated Tremor Ataxia Syndrome
GABA	Gama Aminobutyric acid
GABA-T	GABA-Transaminase
GC/MS	Gas Chromatography/ Mass Spectrometry
GIS	Gastrointestinal Symptoms
GWA	Genome wide Association
GLN	Glutamine
GLU	Glutamic
GluR6	Glutamate Receptor 6
GAD	Glutamic Acid Decarboxylase
GF/CF diet	Gluten- and Casein-free
HPLC	High Performance Liquid Chromatography
HFA	High-Functioning Autism
HIAA	Hydroxyindoleacetic Acid
5-HTP	5-Hydroxytryptophan

ID	Intellectual Disability
IQ	Intelligence Quotient
ICD-10	International Classification of Diseases, Tenth
KO mouse	knockout Mouse
LTD	Long Term Depression
LTP	Long-Term Potentiation
MECP	Methyl –CPG-binding protein 2
MEG	Magnetoencephalography
m TOR	Mammalian Target of Rapamycin
MS/MS	Mass Spectrometry/ Mass Spectrometry
MMR	Measle, Mumps, Rubella Vaccine
MR	Mental Retardation
mGluR5	Metabotropic Glutamate Receptor 5 Pathway
M-CHAT	Modified Checklist for Autism in Toddlers
MAO	Monoamine Oxidase
MPEP	2-methyl-6-(phenylethynyl)-pyridine
MBP	Myelin Basic Protein
NA	Noradrenaline
NF1	Neurofibromatosis Type 1
NO	Nitric Oxide
NMDA	N methyl D Aspartate

OAS	Overt Aggression Scale
ОТ	Occupational Therapy
OXTR	Oxytocin receptor gene
PI3 Kinase	Phosphatidyl Inositol Kinase
PPARg	Peroxisome Proliferator-Activated Receptors Gamma
PDD-NOS	Pervasive Developmental Disorder Not Otherwise Specified
PDDST	Pervasive Developmental Disorder Screening Test
PDDs	Pervasive Developmental Disorders
PKU	Phenylketonuria
PTEN	Phosphatase and Tensin Gene
PSL	Platelet Serotonin Levels
PPP	Platelet-Poor Plasma
PCR	Polymerase Chain Reaction
PWP	Prader-Willi Phenotype
PPI	Prepulse Inhibition
PCPs	Primary Care Practitioners
POI	Primary Ovarian Insufficiency
PLP	Pyridoxal Phosphate
RELN	Reelin Gene

R S	Rett Syndrome
SAD	Seasonal Affective Disorder
SIDS	Sudden Infant Death Syndrome
SSA	Succinic Semialdehyde
SSRIs	Selective Serotonin Reuptake Inhibitors
SE, 5-HT	Serotonin
SERT	Serotonin Transporter
SNP	Single Nucleotide Polymorphism
SPECT	Single Photon Emission Computed Tomography
SLO	Smith-Lemli-Opitz Syndrome
SCQ	Social Communication Questionnaire
SCID	Structured Clinical Interview for the DSM-IV
TBE	Tris/Borate/EDTA
TEACCH	Treatment and Education of Autistic and
	Related Communication Handicapped Children
TCA	Trichloroacetic Acid
TSC	Tuberous Sclerosis
UPD	Uniparental Disomy
UTR	Untranslated Region