

شبكة المعلومات الجامعية

يسم الله الرحمن الرحم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد الم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

University of El-Mansoura Faculty of Engineering Electrical Engineering Department

A study of Ferroresonance Phenomenon in Power Systems

By

Eng. Esam Ali Ali Saafan

A Thesis Submitted In Partial Fulfillment For The Requirements Of The Degree Of Master Of Science In Electrical Engineering

Supervisors

Professor Mansour Hassan Abdel-Rahman

Professor and Head of
Electrical Engineering Department
Faculty of Engineering-University of El-Mansoura

Dr. Ahmed El-Said Mohamed Hassan

Electrical Engineering Department Faculty of Engineering-University of El-Mansoura

2007

C Y 101

University of El-Mansoura
Faculty of Engineering
Electrical Engineering Department

621.3

A study of Ferroresonance Phenomenon in Power Systems

Thesis Submitted by Eng. Esam Ali Ali Saafan

The Supervisors

Name	Position
Professor Mansour Hassan Abdel-Rahman	Professor and Head of Electrical Engineering Department Faculty of Engineering University of El-Mansoura
Dr. Ahmed El-Said Mohamed Hassan	Electrical Engineering Department Faculty of Engineering University of El-Mansoura

The Supervisors Signatures

Name	Signature
Professor Mansour Hassan Abdel-Rahman	MILIFIRE
Dr. Ahmed El-Said Mohamed Hassan	411

The Approval Sheet

Thesis Title: A study of Ferroresonance Phenomenon in Power Systems

The researcher: Esam Ali Ali Saafan

Date: 24/1/2007

The Approval Committee's Members

Name	Position
Professor. Dr. Esam E. M. Aboel- Zahab	Professor Electrical Power & Machines Department Faculty of Engineering University of Cairo
Prof. DrIng. Fathi M. H. Youssef	Professor Electrical Engineering Department Faculty of Engineering University of El-Mansoura
Professor Mansour Hassan Abdel- Rahman	Professor and Head of Electrical Engineering Department Faculty of Engineering University of El-Mansoura

The Committee's Members Signatures

Name	Signature
Professor. Dr. Esam E. M. Aboel-Zahab	A-
Prof. DrIng. Fathi M. H. Youssef	Late Tonsset
Professor Mansour Hassan Abdel-Rahman	M.H. A. Ran

ACKNOWLEDGMENTS

First of all, it is through God's grace that the present work could be fulfilled. No word of gratitude would be enough to express my indebtedness to my supervisor, **Professor Mansour Hassan Abdel-Rahman.** His generous effort and continuous encouragement have actually helped me from the early to the final stages of this thesis. The tolerance and kindness he always showed whenever I asked for his help and advice are really worth appreciation. I cannot express my feelings for this sincere, continuous encouragement and kind supervision, enabled me to complete this work. Really, he has done a lot more than just supervising. Also, my sincere gratitude and indebtedness to my **Dr. Ahmed El-Said Hassan**, for his willing guidance and assistance that have been indispensable throughout this work. I never forget the unlimited encouragement and support he used show, which really helped me keep up intellectual research effort from beginning to end.

I wish to express my deepest gratitude and obligation to Prof. Dr. -Ing. Fathi Mohamed Hamad Youssef, Electrical Engineering Department for his support, encouragement, guidance, generous assistance, kind help and enlightening discussion throughout the research and in preparing this thesis. I learned a lot from him. On the personal level, he is very kind and generous with those who work

under his guidance and in the same time he has a very respectable personality. On the scientific level, his aim is to make almost good and perfect work.

My best thanks to **Professor. Dr. Esam E. M. Aboel-Zahab**, Electrical Power and Machines Department, Cairo University, for his help, valuable advises, valuable discussion and encouragement.

Finally, heartfelt thanks for my family; my dear mother, my father and my tolerant wife, for their great encouragement, spiritual support, and for everything.

Esam Ali Ali Saafan

ABSTRACT

Ferroresonance or nonlinear resonance is a complex electrical phenomenon, which may cause overvoltages and overcurrents with dangerous effects on electrical equipments. It causes protective devices, potential transformers and measuring instruments damages.

A reliable prediction of the ferroresonance overvoltages can provide valuable information to planners to design the system, engineers to specify the equipment and operators to run the system within all the design and tested criteria and capabilities. This comprehensive understanding can be achieved if all system parameters are available or can be estimated with reasonable accuracy. It can also indicate which parameters affect the phenomenon and could be used to control it. In our case study, these parameters are suspected to be source voltage magnitude, de-energization phase angle, transformer winding connections, and the capacitive coupling between bus conductors.

In this research, the system under study has been chosen from practice such that it has overvoltages and overcurrents which cause potential transformers damages. The system has been modeled using PSCAD. Detailed analysis is performed to investigate the relation between system parameters and the occurrence of the phenomenon. Based on this analysis many mitigation means are proposed. These mitigation means are Ferroresonance Suppression Circuit (FSC), controlling the capacitive coupling between bus conductors, and Metal-Oxide Varistor (MOV) arrester.

In case of FSC a feedback control system has been designed and constructed to detect and dampen ferroresonant oscillations. The design of the damping elements (resistors or inductors) has been undertaken to maximize damping effect and improve system performance.

Changing the bus capacitance has been also successfully undertaken as a mitigation means to the ferroresonance overvoltages. Also investigation of the implementation of MOV arrester has been performed to avoid the risk of the ferroresonance phenomenon.

CONTENTS

CHAPTER 1: Introduction	
1.1 Over view	1
1.2 Historical background	I
1.3 Ferroresonance cases	1
1.4 Objectives of the present thesis	3
1.5 Outlines of the present thesis	6 6
CHAPTER 2: Ferroresonance Phenomenon	
2.1 Over view	8
2.2 Analysis of ferroresonance phenomenon	9
2.2.1 Principles of ferroresonance	10
2.3 Ferroresonance modes	16
2.3.1 Fundamental mode	17
2.3.2 Subharmonic mode	17
2.3.3 Quasi-periodic mode	18
2.3.4 Chaotic mode	19
2.4 Electrical power systems favorable to ferroresonance	19
2.4.1 Potential transformer energized through grading	19
capacitance of one (or more) open circuit-breaker(s)	1,
2.4.2 Potential transformers connected to an isolated neutral system	20
2.4.3 Transformer accidentally energized in only one or two phases	21
2.4.4 Potential transformers and HV/MV transformers with isolated neutral	23
2.4.5 Mutual coupling onto de-energized line that has a connected transformer	.24
2.4.6 Capacitive coupled voltage transformer	25
2.5 Symptoms of ferroresonance	26
2.5.1 Audible Noise	27

2.5.2 Overheating	^-
2.5.3 Arrester Failure	27
2.5.4 Flicker	27
2.5.5 Cable Switching	28
2.6 Summary	28
·	29
CHAPTER 3: System Modeling in PSCAD/EMTDC	
3.1 Over view	30
3.2 PSCAD/EMTDC	30
3.2 System under study	31
3.4 PSCAD System model	34
3.4.1 Equivalent Source	35
3.4.2 Filters	35
3.4.3 Bus Capacitance	36
3.4.4 Grading Capacitors	37
3.4.5 Potential Transformer	37
3.4.6 Station Service Transformer	43
3.5 Summary	48
	10
CHAPTER 4: Effect of System Parameters on	
Ferroresonance Phenomenon	
4.1Over view	49
4.2 Phenomenon tracing	49
4.3 Parameter effects	53
4.3.1 Source voltage magnitude	53
4.3.2 De-energization phase angle	54
4.3.3 Transformer winding connection	55
4.3.4 Capacitive coupling between bus conductors	56
4.4 Summary	58
	50
CHAPTER 5: Ferroresonance Mitigation Means	
3.1 Over view	59
5.2 Ferroresonance Suppression Circuit (FSC)	60
5.2.1 Basic Idea of the FSC	60