

Analysis Of The Outcome Measures Of High Frequency Oscillatory Ventilation (HFOV) In Critically Ill Children With Acute Lung Injury (ALI) And Acute Respiratory Distress Syndrome (ARDS) In Critically Ill Infants And Children.

Thesis

Submitted For Partial Fulfillment Of The Master Degree In Pediatrics

By

Doaa Mohammad Farrag Hamed

M. B., B. Ch.

Supervisors Prof. Dr. Mahmoud Tarek Abd El- Monim.

Professor of Pediatrics
Faculty of medicine – Ain Shams University

Dr.Mervat Gamal Eldin Mansour

Assistant professor of Pediatrics Faculty of medicine – Ain Shams University

Prof. Dr. Maha Mohamed El Gaafary

professor of public health
Faculty of medicine – Ain Shams University

Faculty of medicine Ain Shams University Cairo 2013

قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا

إِنَّكَ أَنتَ الْعَلِيمُ الْحُكِيمُ

صدق الله العظيم

سورة البقرة آية٣٢

Acknowledgment

First and foremost, thanks to ALLAH, the most merciful, for achieving any work in my life.

I would like to express my great appreciation to Prof. Dr. Mahmoud Tarek Abd El- Monim. Professor of Pediatrics, Faculty of Medicine, Ain Shams University; for his sincere effort and valuable advice. His time and supreme effort are clear in every part of this work. Many thanks & gratitude for him.

I am deeply grateful to Dr.Mervat Gamal Eldin Mansour, Assistant professor of Pediatrics, Faculty of Medicine, Ain Shams University, who devoted her time, effort and experience to facilitate the production of this work.

I wish to introduce my deep respect and thanks to Prof. Dr. Maha Mohamed El Gaafary, Professor of public health, Faculty of medicine, Ain Shams University, for her kind care and great assistance throughout this work.

Finally, my sincere appreciation for my family for their support and encouragement.

Doaa mohammed Farrag

Contents

	Page
Acknowledgment	
List of Contents	
List of Abbreviations	I
List of Figures	VI
List of Tables	VIII
Introduction and Aim of the study	1
Review of literature	4
Patients and Methods	68
Results	81
Discussion	111
Summary and Recommendation	131
References	136
Arabic Summary	

List of Abbreviations

ABG	Arterial Blood Gases.
AECC	American–European Consensus conference.
ALI	Acute lung injury.
APRV	Airway Pressure Release Ventilation.
ARDS	Acute Respiratory Distress Syndrome.
ARF	Acute Respiratory Failure.
BE	Base Excess.
BiPAP	Biphasic Airway Pressure.
CBC	Complete Blood Count.
CDP	Continuous Distending Pressure.
CI	confidence interval.
CMV	Conventional Mechanical Ventilation.
CO2	Carbon dioxide.
CPAP	continuous positive airway pressure.
CRP	C- Reactive Protein.
CV	conventional ventilation.
CXR	chest x ray.
DAD	Diffuse Alveolar Disease.
DIC	Disseminated Intravascular Coagulation.
DLO2	The diffusing capacity for O2.
dP	amplitude.

ECM	Extra-Cellular Matrix.
ECMO	Extracorporeal membrane oxygenation.
EIT	Electrical Impedance Tomography.
EPCs	Endothelial progenitor cells.
ERV	Expiratory Reserve Volume.
ET	endotracheal tube.
F	oscillatory frequency.
FiO ₂	Fraction of inspired oxygen.
FRC	Functional Residual Capacity.
HCO ₃	bicarbonate.
HFFI	High Frequency Flow Interrupter.
HFJV	High Frequency Jet Ventilation.
HFNC	High Frequency Non Conventional ventilation.
HFOV	High-Frequency Oscillatory Ventilation.
HFPPV	High-Frequency Positive Pressure Ventilation.
HFV	High-Frequency Ventilation.
HMGB	High-Mobility-Group B.
IC	inspiratory capacity.
ICU	Intensive Care Unit.
IL-1, IL-6,	interleukin 1,6,8,10.
IL-8-10	
INO	Inhaled Nitric Oxide.
INR	international normalized ratio.
IQR	inter quartile range.
IRV	Inverse Ratio Ventilation.

LPV	Lung Protective Ventilation.
MAP	mean airway pressure.
MIF	Macrophage migration inhibitory factor.
mPaw	mean airway pressure.
MRSA	Methicillin resistant staph aureus.
MSOF	Multi-System Organ Failure.
MV	Mechanical Ventilation.
NFkB	nuclear factor k -light-chain-enhancer of activated
	lymphocytes.
NICU	Neonatal Intensive Care Unit.
NIV	Non Invasive Ventilation.
NS	Non Significant.
OI	oxygenation index.
OR	odds ratio.
PaCO ₂	Partial pressure of arterial Carbon dioxide.
PAF	Platelet Activating Factor.
PAI-1	Plasminogen Activator Inhibitor 1.
PaO ₂	partial pressure of arterial oxygen.
PC-IRV	Pressure controlled Inverse Ratio Ventilation.
PEEP	Positive End-Expiratory Pressure.
PELOD	Pediatric Logistic Organ Dysfunction.
PFC	perfluorocarbon.
PICU	Pediatric Intensive Care Unit.
PIP	Peak Inspiratory Pressure.

PLV	partial liquid ventilation.
PMN	polymorph nuclear neutrophils.
ppm	part per million.
PRISM	Pediatric Risk of Mortality.
PRVC	Pressure Regulated Volume Contolled mode.
PSV	Pressure Support Ventilation.
PtCO ₂	Transcutaneous CO ₂
RAGE	Receptor for Advanced Glycation.
RCT	Randomized Controlled Trial.
RM	Recruitment Maneuver.
RR	relative risk.
RV	Residual Volume.
SAD	Small Airway Disease.
SaO ₂	O_2 saturation .
SD	Standard Deviation.
SGOT	serum glutamic oxal acetic transaminase.
SIMV	Synchronized intermittent mandatory ventilation.
SP-B	surfactant protein B.
SPSS	Statistical Program for Social Science.
TGFb	Transforming Growth Factor b.
TLC	Total Lung Capacity.
TNFa	Tumour Necrosis Factor a.
TV	Tidal Volume.
USA	United States of America.

V'CO ₂	CO ₂ clearance.
V _A /Q	ventilation perfusion ratio.
VAP	ventilator associated pneumonia.
VC	Vital Capacity.
VEGF	Vascular Endothelial Growth Factor.
VFDs	Ventilator Free Days.
VILI	Ventilator Induced Lung Injury.
WBCS	White Blood Cells.
WMD	weighted mean difference.
WOB	Work of Breathing.

List of Figures

Figure	Subject	Page
1	Anatomy of the Respiratory System (Respiratory passages)	4
2	A, Surface view of capillaries in an alveolar wall. B, Cross-sectional view of alveolar walls and their vascular supply	6
3	Diagram showing lung volumes	8
4	Ultrastructure of the alveolar respiratory membrane, shown in cross section	14
5	Typical Chest Radiograph and Computed Tomographic Scan of a Patient with Acute Respiratory Distress Syndrome. A-The chest radiograph shows bilateral pulmonary infiltrates that appear to be diffuse. B- A computed tomographic scan of the thorax from the same patient demonstrates that the distribution of the bilateral infiltrates is predominantly in dependent regions with more normal-appearing lung in nondependent regions.	23
6	Protocol on approach to children with ALI/ARDS	25
7	Respiratory management in children with ALI/ARDS	26
8	The pressure-volume curve of the lung. A, inflation limb; B, deflation limb. On inflation (A) lungs need higher pressures to inflate than on deflation. On deflation (B), the higher lung volume can be maintained on lower pressure. Thus, once the lung is open it is more compliant. At the lower inflection point the lung opens up, compliance improves and at the upper inflection point optimal lung volume is achieved.	38

9	Gas transport mechanisms during high-frequency ventilation.	58
10	Algorithm of the open lung approach in diffuse alveolar disease	62
11	Print screen for a program of PELOD score	71
12	GALILEO ventilator	74
13	NEWPORT e360 ventilator	74
14	SLE 5000 Infant Ventilator	75
15	ABL 5 for Arterial Blood gases	77
16	Sysmex XT-1800 for Complete Blood Count	78
17	COBAS INTEGRA 800 for CRP	79
18	Classification of studied patients	81
19	Gender distribution of the studied patients in PICU	82
20	Cause of ALI/ ARDS among the studied patients in PICU	83
21	Comparative Parameters between the survivors and non survivors as regard Glasgow score at the end of HFOV	95
22	Comparative Parameters between the survivors and non survivors as regard total PELOD at the end of HFOV	96
23	Comparative Parameters between the survivors and non survivors as regard predicted mortality at the end of HFOV	96
24	Comparative Parameters between the survivors and non survivors as regard PEEP before HFOV	98
25	Comparative Parameters between the survivors and non survivors as regard TV (Tidal Volume) before HFOV	98
26	Comparative Parameters between the survivors and non survivors as regard MAP at the end of HFOV	101
27	Duration of PICU Stay between the survivors and non survivors	108
28	Cumulative Survival of Patients on HFOV	110

List of Tables

Table	Subject	Page
1	The Berlin Definition of Acute Respiratory Distress Syndrome	17
2	Detailed list of common underlying direct and indirect causes of ALI/ARDS	18
3	Pathological Phases in ARDS	20
4	Key mediators of ALI	22
5	Differential diagnosis of ALI/ARDS	24
6	Therapeutic strategies in ARDS	27
7	Age distribution of the studied patients in PICU (N=31)	82
8	Gender distribution of the studied patients in PICU (N=31)	82
9	Cause of ALI/ ARDS among the studied patients in PICU (N=31)	83
10	Distribution of lung injury among the studied patients (N=31)	84
11	Modes of Mechanical Ventilation (MV) among the studied patients (N=31)	84
12	Age distribution in early HFOV patients and rescue HFOV patients	85
13	Gender distribution in early HFOV patients and rescue HFOV patients	85
14	Cause of ALI/ ARDS among early HFOV patients and rescue HFOV patients	86
15	Comparative Parameters between early HFOV patients and rescue HFOV patients as regard PELOD Parameters on admission, at HFOV onset and at the end of HFOV	87
16	Comparative Parameters between early HFOV patients and rescue HFOV patients as regard HFOV setting	89
17	Comparative Parameters between early HFOV patients and rescue HFOV patients as regard ABG Parameters	90
18	Comparative Parameters between early HFOV patients and rescue HFOV patients as regard OI (oxygenation index)	91

19	Analysis of Outcome measures among early HFOV patients and rescue HFOV patients	92
20	Age distribution of the survivors and non survivors	92
21	Gender distribution of the survivors and non survivors	93
22	Cause of ALI/ ARDS among survivors and non survivors	93
23	Comparative Parameters between the survivors and non survivors as regard PELOD Parameters on admission, at HFOV onset and at the end of HFOV	94
24	Comparative Parameters between the survivors and non survivors as regard Conventional Mechanical Ventilation (CMV) setting	97
25	Comparative Parameters between the survivors and non survivors as regard Lung recruitment on Conventional Mechanical Ventilation	99
26	Comparative Parameters between the survivors and non survivors as regard onset of HFOV	99
27	Comparative Parameters between the survivors and non survivors as regard HFOV setting	100
28	Comparative Parameters between the survivors and non survivors as regard ABG Parameters	102
29	Comparative Parameters between the survivors and non survivors as regard OI (oxygenation index)	103
30	Complications of Mechanical Ventilation among the survivors and non survivors	104
31	Comparative Parameters between the survivors and non survivors as regard C - reactive protein (CRP)	105

32	Comparative Parameters between the survivors and non survivors as regard CBC Parameters immediate before HFOV	105
33	Comparative Parameters between the survivors and non survivors as regard CBC Parameters at the end of HFOV	106
34	Isolated organisms in Blood cultures of the survivors and non survivors	106
35	Length of PICU Stay (days) in both survivors and non survivors	107
36	Duration of mechanical ventilation and mechanical Ventilator days (total ventilator days) in both survivors and non survivors	108
37	Early and late mortality among studied patients (N=31)	109
38	Survival of studied Patients during their stay in PICU (N=31)	109