IMPACT OF GREEN-HOUSE COVER ON POTENTIAL EVAPOTRANSPIRATION AND CUCUMBER WATER REQUIREMENT

By

FADL ABDELHAMID HASHEM

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2007

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

2011

Approval Sheet

IMPACT OF GREEN-HOUSE COVER ON POTENTIAL EVAPOTRANSPIRATION AND CUCUMBER WATER REQUIREMENT

By

FADL ABDELHAMID HASHEM

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2007

This thesis for Ph. D. degree has been approved by: Dr. Said Abdalla Shehata Prof. of Vegetable Crops, Faculty of Agriculture, Cairo University. Dr. Usama Ahmed El-Behairy Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University. Dr. Mamdouh Mohamed Fawzy Abdallah Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University.

Date of Examination: 16 / 7 / 2011

IMPACT OF GREEN-HOUSE COVER ON POTENTIAL EVAPOTRANSPIRATION AND CUCUMBER WATER REQUIREMENT

By

FADL ABDELHAMID HASHEM

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2003 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2007

Under the supervision of:

Dr. Mamdouh Mohamed Fawzy Abdallah

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Essam Mohamed Abd El Moniem

Prof. of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Abdalla Medany

Head of Research, Horticulture Research Institute, Agricultural Research Center

أثر غطاء الصوبة على البخرنتح المرجعي والمقنن المائي للخيار

رسالة مقدمة من

فضل عبد الحميد هاشم

بكالوريوس علوم زراعية (بساتين)، جامعة عين شمس، 2003 ماجستير علوم زراعية (خضر)، جامعة عين شمس، 2007

للحصول على درجة دكتور فلسفة في العلوم الزراعية (خضر)

قسم البساتين كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

أثر غطاء الصوبة على البخرنتح المرجعي والمقنن المائي للخيار

رسالة مقدمة من

فضل عبد الحميد هاشم

بكالوريوس علوم زراعية (بساتين) ، جامعة عين شمس، 2003 ماجستير علوم زراعية (خضر) ، جامعة عين شمس، 2007

للحصول على درجة دكتور فلسفة في العلوم الزراعية (خضر)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنـــة:

 ئه شحاته	د. سعيد عبد اا
ر، قسم البساتين، كلية الزراعة، جامعة القاهره	أستاذ الخض
 د البحيرى ر، قسم البساتين، كلية الزراعة، جامعة عين شمس	د. أسامة أحما
د فوزي عبد الله ر، قسم البساتين، كلية الزراعة، جامعة عين شمس	
ة: 2011 / 7 / 16	تاريخ المناقش

جامعة عين شمس كلية الزراعة

رسالة دكتوراه

اسم الطالب : فضل عبد الحميد هاشم

عنوان الرسالة : أثر غطاء الصوبة على البخرنتح المرجعي

والمقنن المائى للخيار

اسم الدرجة : دكتورفلسفة في العلوم الزراعية (خضر)

لجنة الإشراف:

د. ممدوح محمد فوزي عبد الله.

أستاذ الخضر، قسم البساتين، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. عصام محمد عبد المنعم.

أستاذ الأراضي، قسم الأراضي، كلية الزراعة، جامعة عين شمس

د. محمود عبد الله مدنى.

رئيس بحوث، معهد بحوث البساتين، مركز البحوث الزراعية

تاریخ التسجیل: ۱۱/۲/۸۰۸

الدراسات العليا

أجيزت الرسالة بتاريخ

ختم الإجازة

2011 / 7 / 16

موافقة مجلس الجامعة

موافقة مجلس الكلية

2011 / /

2011 / /

ABSTRACT

Fadl AbdelHamid Hashem: Impact of Green-House Cover on Potential Evapotranspiration and Cucumber Water Requirement. Unpublished Ph. D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2011.

The experiment was conducted during two successive spring seasons of 2008 and 2009 at El-Bosaily farm, El-Behira governorate at the North Coast of the Nile Delta, in Egypt. This work aimed to study the effect of green-house cover, irrigation level and soil mulch on growth and yield of cucumber (Cucumis sativus L. cv. Reda F₁) as well as the interaction between these factors. Three green-house covers (polyethylene sheet, white and black net) as main plot, three irrigation levels [80%, 100% and 120% of the potential evapotranspiration estimated according to class A pan equation (ET_o)] as submain plot and three soil mulch types (transparent mulch, black mulch, without mulch) as sub submain plot, were applied in split-split-plot design with three replicates. The results showed that the highest air temperatures, relative humidity and evapotranspiration were detected in polyethylene cover treatment followed by white net treatment. Plant height, number of leaves, leaf area, total fresh and dry weights and yield were increased with white net cover treatment. The highest vegetative growth and yield were obtained by 100% ET_o compared to 80% ET_o and 120% ET_o treatments. Vegetative growth and yield were increased with the treatments of transparent mulch compared to the other treatments. The effect of interaction between greenhouse cover, irrigation levels and soil mulch were clear with white net cover plus 100% of ET_o and transparent mulch, where the vegetative growth and yield were increased significantly during both experimental seasons.

Key words

Cucumis sativus L., Irrigation levels, Polyethylene sheet, White net, Black net, Water use efficiency, Crop yield

CONTENTS

1 2	LIST OF TABLESLIST OF FIGURESINTRODUCTIONREVIEW OF LITERATURE	V VI 1 3
2.1	Greenhouse structure and covering materials	3
2.2	Effect of different green-house covers on micro-	
	climatic data	5
2.2.1	Air temperature	6
2.2.2	Soil temperature	9
2.2.3	Relative humidity	11
2.2.4	Light intensity	13
2.2.5	Evapotranspiration and irrigation water	
	requirements	15
2.3	Effect of different green-house covers, irrigation	
	levels and soil mulch treatments on growth of	
	cucumber plant.	18
2.3.1	Green-house cover	18
2.3.2	Irrigation levels	22
2.3.3	Soil mulch	26
2.4	Effect of different green-house covers, irrigation	
	levels and soil mulch treatments on yield of	
	cucumber plant.	27
2.4.1	Green-house cover	27
2.4.2	Irrigation levels	29
2.4.3	Soil mulch	31
2.5	Effect of different green-house covers, irrigation	
	levels and soil mulch treatments on nutrient	
	contents of cucumber plant	33
2.5.1	Green-house cover	33
252	Irrigation levels	3/1

2.5.3	Soil mulch
2.6	Effect of different green-house covers, irrigation
	levels and soil mulch treatments on Water use
	efficiency (WUE) of cucumber plant
3	MATERIALS AND METHODS
3.1	Plant materials
3.2	Treatments
3.2.1	Treatments of green house cover
3.2.2	Treatments of irrigation
3.2.3	Treatments of mulch cover
3.3	Experimental design
3.4	Measurements
3.4.1	Environmental measurements
3.4.2	Plant Growth parameters
	Plant height
	Total leaf area
	Number of leaves
	Total chlorophyll
	Fresh weight
	Dry weight
	Total fruit weight and number of fruits
	The water use efficiency
3.7	Chemical analyses
3.7.1	Plant samples
3.7.1	Soil samples
3.6	Statistical analyses
4	RESULTS AND DISCUSSION
4.1	Effect of different green-house covers on climatic
	data
4.1.1	Minimum air temperature

		Page
4.1.2	Maximum air temperature	50
4.1.3	Minimum relative humidity	51
4.1.4	Maximum relative humidity	52
4.1.5	Light intensity	53
4.1.6	Soil temperature	55
4.1.6	Potential evapotranspiration	57
4.1.7	Total water consumption	58
4.2	Effect of different green-house covers, irrigation	
	levels and soil mulch treatments on vegetative	
	growth of cucumber plants	59
4.2.1	Plant height	59
4.2.2	Number of leaves per plant	63
4.2.3	Stem diameter	66
4.2.4	Total leaf area	69
4.2.5	Chlorophyll	73
4.2.6	Fresh weight of plant	76
4.2.7	Dry weight of plant	80
4.3	Effect of different green-house covers, irrigation	
	levels and soil mulch treatments on yield of	
	cucumber plants	85
4.3.1	Early yield	85
4.3.2	Total yield	88
4.4	Effect of different green-house covers, irrigation	
	levels and soil mulch treatments on chemical	
	contents in fourth leaves of cucumber plants	92
4.4.1	Nitrogen percentage	92
4.4.2	Phosphorus percentage	95
4.4.3	Potassium percentage	99
4.4.4	Calcium percentage	103
4.4.5	Magnesium percentage	106

		Page
4.5	Effect of different green-house covers, irrigation	
	levels and soil mulch on water use efficiency	
	(W.U.E) of cucumber plants	111
4.6	Relationships between evapotranspiration data in	
	the open field and different green-house covers	115
6	SUMMARY AND CONCLUSION	117
7	REFERENCES	124
	ARABIC SUMMARY	

LIST OF TABLES

Гable		Page
1	Recorded climatic data in the open field during two	
	seasons of 2008 and 2009.	44
2	Physical and chemical properties of experimental soil and	
2	water analysis	48
3	Water requirements of cucumber under different green-	
4	house covers during spring seasons of 2008 and 2009	58
4	Effect of different green-house covers, irrigation levels and soil	
	mulch on plant heights (cm) of cucumber plants during the two	
	studied seasons	60
5	Effect of different green-house covers, irrigation levels and soil mulch	
	on number of leaves per plants of cucumber plants during the two	
	studied seasons	64
6	Effect of different green-house covers, irrigation levels and soil	
	mulch on stem diameter plant (mm) of cucumber plants during	
	the two studied seasons	67
7	Effect of different green-house covers, irrigation levels and soil	
	mulch on total leaf area per plant (cm ²) of cucumber plants	
	during the two studied seasons	70
8	Effect of different green-house covers, irrigation levels and soil	
	mulch on leaf chlorophyll content (SPAD) of cucumber plants	
	during the two studied seasons	74
9	Effect of different green-house covers, irrigation levels and soil	
	mulch on total plant fresh weight (g/plant) of cucumber plants	
	during the two studied seasons	77
10	Effect of different green-house covers, irrigation levels and soil	
	mulch on total plant dry weight (g/plant) of cucumber plants	
	during the two studied seasons	81
11	Effect of different green-house covers, irrigation levels and soil	
	mulch on early number of fruits per plant and early fruit weight	
	(g/plant) of cucumber plants during the two studied seasons	86

Table		Page
12	Effect of different green-house covers, irrigation levels and soil	
	mulch on total number of fruits per plant and early fruit weight	
	(g/plant) of cucumber plants during the two studied seasons	89
13	Effect of different green-house covers, irrigation levels and soil	
	mulch on total nitrogen percentage of cucumber plants during	
	the two studied seasons	93
14	Effect of different green-house covers, irrigation levels and soil	
	mulch on total phosphorus percentage of cucumber plants during	
	the two studied seasons	96
15	Effect of different green-house covers, irrigation levels and soil	
	mulch on total potassium percentage of cucumber plants during	
	the two studied seasons	100
16	Effect of different green-house covers, irrigation levels and soil	
	mulch on total calcium percentage of cucumber plants during the	
	two studied seasons	104
17	Effect of different green-house covers, irrigation levels and soil	
	mulch on total magnesium percentage of cucumber plants during	
	the two studied seasons	107
18	Effect of different green-house covers, irrigation levels and soil	
	mulch on water use efficiency (Kg/m³) of cucumber plants	
	during the two studied seasons	112

LIST OF FIGURES

Figure		Page
1	The minimum air temperatures under polyethylene sheet, black	
	net and white net of two spring seasons 2008 and 2009	49
2	The maximum air temperature under polyethylene sheet, black	
	net and white net of two spring seasons 2008 and 2009	50
3	The minimum relative humidity under polyethylene sheet, black	
	net and white net of two spring seasons 2008 and 2009	52
4	The maximum relative humidity under polyethylene sheet,	
	black net and white net of two spring seasons 2008 and 2009	53
5	Light intensity under polyethylene sheet, black net and white	
	net of two spring seasons 2008 and 2009	55
6	Effect of different green-house covers, irrigation levels and soil	
	mulch on soil temperature during the two study seasons (2008-	
	2009)	56
7	The evapotranspiration under polyethylene sheet, black net and	
	white net of two spring seasons 2008 and 2009	57
8	Relationships between evapotranspiration data in the open field	
	and plastic cover	116
9	Relationships between Evapotranspiration data in the open field	
	and whit net cover	116
10	Relationships between Evapotranspiration data in the open field	
	and black net cover	116

1. INTRODUCTION

Agriculture is the largest water user in nearly every country. Water is also being a limited factor due to its availability (CIHEAM, 2000) and quality (Vengosh et al., 2004) in the Mediterranean Region. Water allocated to irrigation is about 75% of the global water resources (Anonymous, 2008). In view of increased domestic competition for resources and the need of larger agricultural production to ensure food security, such a fraction is unsustainable. Therefore water security can only be warranted by a large increase in agricultural water use efficiency (Tuzel et al., 2009).

In recent years in Egypt, growing vegetables under protected cultivation is expanding rapidly. The common types of protected cultivation are the plastic low tunnels and the single span plastic houses. The number of single arch greenhouses reached about twenty thousand, while about 70% are used for cucumber production (El Aidy *el al.*, 2007). The total number of green-houses was estimated to be 26682 units of area 540 m² each (2009 statistics) among them 11146 green-house were devoted to cucumber cultivated in the spring season (Anonymous, 2009).

Cucumber is one of the major vegetable crops grown in Egypt under plastic house conditions. It is sub-tropical vegetable crop that grows successfully under conditions of high light, humidity, moisture, temperature and fertilizers inside plastic houses (El-Aidy, 1990).

Using green-house cover shade is one of the management practices that may increase water use efficiency under protected cultivation. The effects of shade on plants height, particularly with regard to photosynthetic productivity have been studied in great details throughout this century (Farag et al., 2010a). Three major shade categories were recognized: Shade avoiders or obligate sun plants; Shade tolerates or facultative sun/shade plants and Shade requires or obligates shade plants. Moreover, using shade screen during the spring growing