Diagnosis of Childhood Pneumococcal Community Acquired Pneumonia by a Rapid Immunochromatographic Urinary Antigen Test

Thesis

Submitted for Partial Fulfillment of Master Degree In Clinical and Chemical Pathology By

Sally Samy Kamel Amin

MB Bch Faculty of Medicine - Ain Shams University

Supervised by

Professor / Nevine Nabil Kassem

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Shereen Ahmed El Masry

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Nour El Din Mohamed Abd El Aal

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2015

Acknowledgements

First and forever, I raise my sincere thanks and deepest gratitude to God for the accomplishment of this thesis. He blessed me with His most merciful and most gracious gifts; one of them is the ability to carry out my medical work.

I want to express my deep thanks and great gratitude to my honored *Prof. Dr. Nevine Nabil Kassem*, Professor of clinical and chemical pathology, Faculty of Medicine - Ain Shams University who provided me with her precious time & valuable comments to scientifically submit this work. She is always happy and willing to help me solve the confusions and direct my approach to the final results of the thesis. It was a great honor to work under her supervision and guidance.

Furthermore, I would like to show my grateful feeling and I would like to express my appreciation to *Dr. Shereen Ahmed El Masry*, Assistant professor of clinical and chemical pathology, Faculty of medicine - Ain Shams University for her supervision, continuous guidance, cooperation and helpful instructions. Her intellectual and moral support helped immeasurably in so many ways.

I wish to thank all Pediatric ICU staff; doctors and nurses who participated in this study for their help and co-operation. I'm also deeply indebted to *Dr. Nour EL Din M. Abdel Aal*, Lecturer of pediatrics and neonatology, Faculty of Medicine - Ain Shams University for his continuous guidance, help and encouragement throughout this work.

Finally, words alone cannot express the thanks I owe to my great family and friends for their great support to me during the last months which contributed directly and indirectly to this thesis work. I shall remain grateful and thankful to them all my life.

Sally Samy Kamel Amin

List of Contents

Title	Page Number
List of Tables	а
List of Figures	С
List of abbreviations	d
Introduction	1
Aim of the work	3
Review of Literature	
Chapter 1: Pneumonia	Z
Chapter 2: Streptococcus pneumoniae	11
Chapter 3: Diagnosis of Pneumococca	pneumonia 28
Chapter 4: Treatment of Pneumococca	al Infection 54
Chapter 5: Pneumococcal Prevention	and Vaccination 57
Subjects And Methods	61
Results	83
Discussion	99
Conclusion	105
Recommendations	106
Summary	107
References	110
Arabic Summary	

List of Tables

Table Number Title Page Number

Table (1):	The Age-Based Etiologies of Childhood Pneumonia.	9
Table (2):	Taxonomic classification of Streptococcus pneumoniae.	11
Table (3):	The main pneumococcal virulence factors and their main role in colonization.	17
Table (4):	PERCH specimen transport and storage conditions.	34
Table (5):	Interpretation of Procalcitonin Test Results in Patients with Acute Respiratory Tract Infection.	51
Table (6):	Antimicrobial Therapy in Community- Acquired Pneumonia Based on Age.	56
Table (7):	Serotypes in pneumococcal vaccines.	59
Table (8):	Hematological reference ranges according to the age.	65
Table (9):	Ingredients of BACTEC culture vials.	67
Table (10):	Gender distribution among case and control groups.	83
Table (11):	Age distribution among case and control groups.	84
Table (12):	UAT results in cases and controls.	85
Table (13):	Organisms identified by positive blood culture bottles.	86

List of Tables (Cont.)

Table Nun	nber Title	Page Nu	mber
Table (14):	Correlation between blood culture urinary antigen test in detection <i>Pneumcocci.</i>		87
Table (15):	Correlation between blood culture urinary antigen test according to typorganism isolated.		90
Table (16):	Correlation between CRP levels and be culture for evaluating the diagnostic value of CRP.		92
Table (17):	Association between TLC levels (acco to age) and blood culture for evaluating diagnostic validity of TLC.	•	93
Table (18):	Correlation between serum sodium I and blood culture for evaluating diagnostic validity of serum sodium level.		94
Table (19):	Diagnostic Performance of Urinary an test in comparison to the other laboratests in a descending manner arranger according to their efficacy.	atory	95
Table (20):	Combination between serum sodium I and Urinary antigen test in correlation Blood culture.		97
Table (21):	Diagnostic Performance of Urinary an test and its combination to serum so level.	•	98

List of Figures

Figure N	umber Title	Page Number
Figure (1): pneumonia	Area of the lung affected in differe	nt types of 10
Figure (2): responsible	Pneumococcal serogroups whic	h are most 15
Fig. (2)	for invasive disease.	
Figure (3):	Host defense mechanisms respiratory epithelium.	of the 20
Figure (4):	Inflammatory cells & mediators causing damage to alveolar membrane.	
Figure (5):	Invasie and Non-invasive pne disease.	eumococcal 27
Figure (6):	Positive quellung reaction.	44
Figure (7):	Flow chart for identificate characterization of a <i>S. pneumoni</i>	
Figure (8):	BD BACTEC™ Peds Plus™ /F Cu and BACTEC series instrument.	ulture vials 68
Figure (9):	BinaxNOW® test device.	72
Figure (10):	Procedure of Urinary antigen test	t. 76-78
Figure (11):	Frequency of urinary antigen tes among Streptococcus pneumo Non-Streptococcus pneumoniae	oniae and
Figure (12):	Frequency of urinary antigen tes among all studied CAP cases.	t positivity 89
Figure (13):	Frequency of combined Urinantest with hyponatremia amor antigen test positive and negative	ng Urinary

List of abbreviations

Abbreviation	Description
APPs	Acute phase proteins
ATP	Adenosine triphosphate
BAL	Bonchoalveolar lavage
BAP	Blood agar plate
ВРР	Bacteraemic pneumococcal pneumonia
C3	Complement protein 3
CAP	Community-acquired pneumonia
CBC	Complete Blood Count
CDC	Centers for Disease Control and Prevention
CFUs	Colony forming units
CPS	Capsular polysaccharide
CRP	C-reactive protein
CSF	Cerebrospinal fluid
СТ	Computed tomography
CWPS	Cell wall polysaccharide
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
ELISA	Enzyme linked immunosorbent assay
FDA	Food and Drug Administration
H_2O_2	Hydrogen peroxide
HIV	Human immunodeficiency virus
Hs-CRP	High sensitivity assays for C-reactive protein
ICT	Immunochromatographic membrane test
IG	Immature granulocyte
IgA1	Immunoglobulin A1
IL-1	Interleukin-1
IPD	Invasive Pneumococcal Disease
IV	Intravenous
LA	Latex agglutination
LRT	Lower respiratory tract
LytA, B and C	Pneumococcal autolysin A, B, C
MDR	Multidrug-resistance
MIC	Minimal inhibitory concentration
MRSA	Methicillin-resistant Staphylococcus aureus
NPV	Negative predictive value
PAF	Platelet activating factor

List of abbreviations (Cont.)

Description **Abbreviation PavA** Pneumococcal adherence and virulence factor A PCR Polymerase chain reaction **PCT** Procalcionin PCV Pneumococcal conjugate vaccine PCV7 Pneumococcal conjugate vaccine 'Heptavalent' **PERCH** Pneumonia Etiology Research for Child Health **PMN** Polymorphonuclear leukocytes **PNSP** Penicillin non-susceptible Pneumococci **PPSV** Pneumococcal polysaccharide vaccine PPV Positive predictive value PPV23 Pneumococcal polysaccharide vaccine (Pneumovax 23®) PRP Penicillin-resistance Pneumococci **RBCs** Red blood cells **RSV** Respiratory syncytial virus S. pneumoniae Streptococcus pneumoniae Serious bacterial infection SBI SIADH Syndrome of inappropriate secretion of antidiuretic hormone SIRS Systemic inflammatory response syndrome SP Streptococcus pneumoniae TLC Total leucocytic count Ventilator-associated pneumonia VAP **WBC** White blood cells WHO The World Health Organization

Introduction

Aim of the Work

Review of Literature

Subjects and Methods

Results

Discussion

Conclusion and Recommendations