

Recent Methods in Treatment of Congenital Nasolacrimal Duct Obstruction

Essay Submitted for the partial fulfillment of Master Degree In Ophthalmology

By:

Karim Mohammed Tharwat Ibrahim Khairy

(M.B.B.ch.)

Faculty of Medicine- Zagazig University

Under Supervision of

Prof. Dr. Saad Mohammed Rashad

Professor of Ophthalmology
Faculty of Medicine - Ain Shams University

Dr.Mahmoud Ahmed El Samkarey

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University Cairo, Egypt 2016

(قَالُوا سُبْحَانَكَ لا عِلْمَ لَنَا إلا مَا عَلَّمْ تَنَا إلا مَا عَلَّمْتَنَا إِنتَكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ)

(سورة البقرة:آية32)

Acknowledgements

First of all, thanks to Allah the most beneficent, the most merciful who helped me not only in this work, but all through my life.

I would like to express my deepest thanks to Prof. Dr. Saad Mohamed Rashad, Professor of Ophthalmology Department, Ain Shams University, for his kind care, valuable guidance, and precious instructions given, which guided me in this work.

Great gratitude and respect are to Dr. Mahmoud Ahmed El Samkarey, Lecturer of Ophthalmology, Ain Shams University, for his continuous encouragement, generous help, fruitful instructions and precious time he spent throughout this work.

Lastly, I would like to present my sincere thanks to all my professors and colleagues, for the fruitful atmosphere they provided me.

Karim Mohammed Tharwat

Contents

List of abbreviations	.I-II
List of Figures	.III-VIII
List of Tables	
Chapter 1: Embryology and Anatomy	.1-12
• Embryology of the lacrimal system	.1-4
• Anatomy of the lacrimal system	.5-12
Chapter 2: Physiology and Pathology	.13-23
• Physiology of the lacrimal system	.13-18
• Pathology of nasolacrimal duct obstruction	19-23
Chapter 3: Diagnosis	.24-61
a. Clinical Examination	.24-38
b. Investigations	.39-61
Chapter 4: Management	.62-150
(1) Conservative treatment	.62-63
(2) Probing & irrigation	.64-90
(3) Intubation & Stents	.89-120
(4) Balloon Catheter & Dilatation	.121-130
(5) Dacryocystorhinostomy	.131-150
Summary	
Chapter 6: References	.154
Arabic Summary	.1-3

List of abbreviations

Atm	Atmospheres
BCI	Bi Canalicular Intubation
BSS	Balanced Salt Solution
CNLDO	Congenital Nasolacrimal Duct Obstruction
CT	Computed Tomography
CT-DCG	Computed Tomography Dacryocystography
DCG	Dacryocystography
DCP	Dacryocystoplasty
DCR	Dacryocystorhinostomy
ELDCR	Endoscopic laser DCR
FDT	Fluorescein Dye Disappearance Test
ILC	inferior lacrimal canaliculi
IML	Inferior Meatal Lamina
KTP	Potassium Titanyl Phosphate
LD	Lacrimal Duct
LC	Lacrimal cord
LDS	Lacrimal Duct System
LG	Lacrimal groove

LNP	Lateral nasal process
LS	Lacrimal Sac
MCI	Monocanalicular silicone intubation
MMC	Mitomycin C
MR-DCG	Magnetic Resonance Dacryocystography
MRI	Magnetic Resonance Imaging
MNP	Medial nasal process
MT	Middle Turbinate
MxP	Maxillary process
NC	Nasal cord
NLD	Nasolacrimal Duct
NLS	Nuclear Lacrimal Scan
PANDO	Primary Acquired Nasolacrimal Duct Obstruction
PEDIG	Pediatric Investigator Group
PM	Pushed Monoka
PMCI	Pushed Monocanalicular silicone intubation
SLC	Superior lacrimal canaliculi
Tc ^{99m}	Technetium-99m
TCL-DCR	Trans Canalicular laser DCR
T-ECLAD	Transcanalicular Endoscope Combined Laser Assisted DCR
YAG	Yttrium Aluminum Garnet

List of Figures

Figure	Title	Page
Fig. 1	Embryology of lacrimal drainage system	2
Fig. 2	Stages of development of the human lacrimal drainage system	4
Fig. 3	Valves of the lacrimal sac and nasolacrimal duct	5
Fig. 4	Lacrimal drainage system Measurements	7
Fig. 5	Histology of canaliculus	8
Fig. 6	Parasagittal view of medial orbital wall	10
Fig. 7	The structure of the tear film	13
Fig. 8	The lacrimal canaliculus	17
Fig. 9	Lacrimal pump mechanism according to 2 different theories	18
Fig. 10	Sticky lids by mucous discharge	25
Fig. 11	Fluorescein dye disappearance test	29
Fig. 12	Retention of fluorescein on the left side in a congenital nasolacrimal obstruction	30
Fig. 13	Syringing via lower canaliculus & reflux through the upper punctum	34
Fig. 14	Diagnostic Probing	36
Fig. 15	Kinds of lacrimal system obstructions	38

Fig. 16	DCG set-up	42
Fig. 17	Digital subtraction DCG of the lacrimal passage	44
Fig. 18	Obstruction at the level of the common canaliculus	45
Fig. 19	Complete obliteration at sac-duct junction on the left side	45
Fig. 20	A Set-up for nuclear lacrimal scan	47
Fig. 21	Normal scintigraphy	48
Fig. 22	Scan after 10 min of nasolacrimal duct stenosis on right side	48
Fig. 23	Scan after 20 min demonstrates significant decreased low on the right and normal low on the left side	48
Fig. 24	Sequential planar-static lacrimal scintigrams, showing patent right side but obstructed left side	49
Fig. 25	Quantitative lacrimal scintigram	49
Fig. 26	CT-DCG of normal lacrimal drainage system	52
Fig. 27	CT–DCG 3-D reconstruction	53
Fig. 28	Delineation of nasolacrimal ducts by (a) T-1 oriented MRI (b) CT	54
Fig. 29	MRI Showing patent system on the right side	55
Fig. 30	Bilateral ductal obstruction in MR-DCG	57
Fig. 31	Flexible Nasal endoscope	58
Fig. 32	Rigid Nasal endoscope	59
Fig. 33	Endoscopy of the left inferior meatus Well-developed ostium of the nasolacrimal duct	61

Fig. 34	Endoscopic view of right nasal space	61
Fig. 35	Right nasal cavity with polyps in the middle meatus & between middle turbinate and septum	61
Fig. 36	Technique of hydrostatic NL massage	63
Fig. 37	Dilation of the lacrimal puncta	70
Fig. 38	Bowman probe passed vertically then horizontally	71
Fig. 39	While probe is advanced medially, simultaneous gentle lateral lid retraction	71
Fig. 40	Broadened nasal bridge probe at brow will be directed at 10–15° angles from a superior to inferior direction	72
Fig. 41	In skull with typical nasal bridge, probe direction will be parallel to each other as probe passes through nasolacrimal ducts	72
Fig. 42	Inferomedial direction of Bowman probe	73
Fig. 43	Manually bent Bowman probes	76
Fig. 44	Graduated probe	77
Fig. 45	Cannulated probe	79
Fig. 46	Probe guided with soft cannula	80
Fig. 47	Portable compacted nasal endoscope for endoscopic assisted probing	84
Fig. 48	Inferior turbinate displacement	85
Fig. 49	Nasal endoscopic view shows free flow of fluorescein under the inferior turbinate	86

Fig. 50	Nasal endoscopic view of inferior turbinate infracture	86
Fig. 51	Free flow of fluorescein after inferior turbinate infracture	86
Fig. 52	Initial retrieval of the silicone tube from the laceration& Retrieval of the first knot	95
Fig. 53	Placement of the second knot	96
Fig. 54	Tube repositioning	96
Fig. 55	Final tube and suture position	97
Fig. 56	Trans-sac fixation suture	98
Fig. 57	Crawford tubes &retrieval hook	101
Fig. 58	A retrieval hook grasping the Crawford probe with tube externally	102
Fig. 59	A retrieval hook is passed into the inferior meatus to grasp the olive tip of the probe	102
Fig. 60	Silicone tube in situ	103
Fig. 61	Silastic tube ends are tied with five single knots and allowed to retract 15 mm into the nose	103
Fig. 62	Ritleng probe and tube	106
Fig. 63	Ritleng intubation steps	108
Fig. 64	Monocanalicular intubation set	109
Fig. 65	Monoka Fayet tube (Guide of Crawford)	110
Fig. 66	The position of the flange on the eyelid margin after tube fixation	110

Fig. 67	The Masterka TM with the guide in place and withdrawn	112
Fig. 68	Probe with marking and Masterka	113
Fig. 69	Masterka intubation; bony contact, rotation, vertical catheterization	114
Fig. 70	Masterka intubation; the two lengths "lacrimal punctum to the floor of the nasal cavity" and "punctum to the site of stenosis"	114
Fig. 71	Removal of the guide	115
Fig. 72	Endoscopic view of inferior nasal meatus after medialization of the inferior turbinate	116
Fig. 73	Anchoring plug insertion into the vertical canaliculus.	117
Fig. 74	Complex stenosis: the guide may pass through the nasolacrimal stenosis but the silicone usually bunches up without passing through	118
Fig. 75	Improper stent length	118
Fig. 76	False passage: No metal-to-metal contact is encountered	119
Fig. 77	Inflation of 2-mm (top) and 3-mm (bottom) balloons	124
Fig. 78	2.7 French dacryocystoplasty catheter introduced over a 0.014-inch guide wire with balloon length 20 mm	125
Fig. 79	Distal end of a 3 mm balloon catheter with the balloon and its markings	125
Fig. 80	Balloon catheter with manometer	126
Fig. 81	Endoscopic view of the inferior meatus showing the balloon catheter exiting from the NLD	127
Fig. 82	Endoscopic view of the inferior meatus showing the balloon dilatation of the distal NLD	127

Fig. 83	Endoscopic view of the inferior meatus showing balloon dilatation of the proximal NLD duct only the tip of the catheter is visible at NLD	128
Fig. 84	Balloon dacryoplasty system uninflated (Top) and inflated (Bottom) states	129
Fig. 85	A typical curvilinear incision	134
Fig. 86	Sac dissected laterally to expose the bony lacrimal fossa	135
Fig. 87	Kerrison punch being used to create a bony ostium	136
Fig. 88	A large bony ostium exposing the nasal mucosa	136
Fig. 89	Lacrimal sac incision using the probe as a guide	137
Fig. 90	Raising a large nasal mucosal flap	137
Fig. 91	Intubation: tubes in place before flap anastomosis	138
Fig. 92	Taut flap anastomosis	138
Fig. 93	Sutured surgical wound	139
Fig. 94	Punctal cheese wiring	141
Fig. 95	Nasal mucosa incision	144
Fig. 96	Removal of frontal process of the maxilla with Kerrison rongeurs	145
Fig. 97	The transilluminator at nasal cavity	145
Fig. 98	Endonasal view of a patent rhinostomy following Endoscopic Laser DCR	148
Fig. 99	Transcanalicular-endonasal approach	151

List of Tables

Table	Title	Page
Table 1	Diagnostic procedures	24
Table 2	Syringing and probing via the lower canaliculus	37
Table 3	Nasal endoscopy in lacrimal surgery	60

Embryology of lacrimal drainage system

The entire lacrimal drainage apparatus is of ectodermal origin, surrounded by muscles of mesodermal source. [1]

In utero, a solid cord of epithelium forms in the region of the medial lower eyelid, eventually sending projections temporally to form the canaliculi and inferiorly to form the nasolacrimal duct. Thus, the puncta and the valve of Hasner are considered "embryologically distal" structures, explaining why most congenital abnormalities of tear drainage are found at these sites [2]

Canalization of the solid cord begins at 4 months of gestation and may continue after birth. Indeed, the most inferior portion of the nasolacrimal duct is imperforate at birth in 50% to 70% of individuals. [3]

At 5.5 weeks' gestation (Fig. 1-A), an ectodermal invagination forms between the lateral nasal process and maxillary process, which becomes pinched off from the surface. At 6 weeks' gestation (Fig. 1-B), a solid cord of ectoderm is located between the primitive medial canthus and nose.

At 12 weeks' gestation (Fig. 1-C), proliferation of the cord occurs laterally toward the eyelid and inferiorly toward the inferior turbinate. The isolated cavities shown appear at 3 to 4 months. At 7 months, canalization is nearly complete (Fig. 1-D), with only the puncta and valve of Henle remaining imperforate. [4]

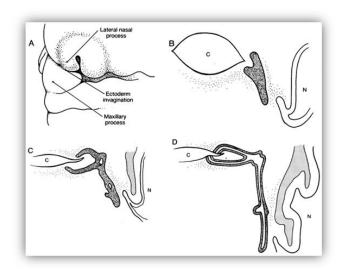


Fig. 1: Embryology of lacrimal drainage system [4]

Stages of the development of the human lacrimal drainage system:

- (A) Formation of the lacrimal lamina (Carnegie stage 16-18 ca 39-44 days) The 'lacrimal lamina' (LL) appears as an epithelial thickening of the lacrimal groove (LG) observed between the lateral nasal process (LNP) and the maxillary process (MxP). At Carnegie stage 18 the lacrimal lamina bifurcates at its medial extreme and is arranged lateral to the nasal cavity but without reaching it. [5]
- (B) Formation of the lacrimal cord (Carnegie stage 19-23 ca 46-53 days)

 The lacrimal lamina (LL) separates from the surface ectoderm to form the 'lacrimal cord' (LC). The lacrimal cord bifurcates at its lateral extreme and forms the superior & inferior lacrimal canaliculi (SLC and ILC). The mesenchyme surrounding the canalicular primordium condenses. [5]