Acute Disseminated Encephalomyelitis among Egyptian Children: A single center experience

Thesis Submitted For Partial Fulfillment of Doctorate Degree in Paediatrics
By

Raghda Mohamed Hesham Abdelhafiez Zaitoun

M.B, B.Ch, 2007 MSc. In Paediatrics, 2012 <u>Under Supervision Of:</u>

Prof. Dr. Hamed Ahmed El-Khayat

Professor of Paediatrics Faculty of Medicine – Ain Shams University

Prof. Dr. Yasser Abdel Azeem Abbas

Professor of Radio-diagnosis Faculty of Medicine- Ain Shams University

Prof. Dr. Omnia Fathy El Rashidy

Professor of Paediatrics Faculty of Medicine- Ain Shams University

Dr. Iman Ali El-Agouza

Assistant Professor of Paediatrics Faculty of Medicine –Ain Shams University

Dr. Doaa Gamal Eissa

Associate Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Acknowledgement

First and foremost, I feel most indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Professor Dr. Hamed Ahmed El Khayat and Professor Dr Omnia Fathy el RashidyProfessors of Pediatrics - Faculty of Medicine- Ain Shams University, for their keen guidance, kind supervision, valuable advice and continuous encouragement, which made the completion of this work possible. Sincere and special thanks go out to Professor Dr. Yasser Abdel Azeem Abbas, professor of Radiodiagnosis, Ain Shams University, for his unexampled kindness and support.

I am also delighted to express my deepest gratitude and thanks to **Dr. Iman Ali El Agouza**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr.DoaaGamalEissa**, Associate Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I would like to heartily express my thanks to my family, friends and colleagues for their support till this work was completed. My sincere thanks and appreciation to

allour patientswhoparticipated in this study, in the hopes that this work will help us serve them, and all other patients, with the best level of care possible. May God bless them all.

Acknowledgement

First and foremost, I feel most indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Professor Dr. Hamed Ahmed El Khayat and Professor Dr Omnia Fathy el Rashidy Professors of Pediatrics - Faculty of Medicine- Ain Shams University, for their keen guidance, kind valuable supervision, advice and continuous encouragement, which made the completion of this work possible. Sincere and special thanks go out to **Professor** Yasser Abdel Azeem Abbas, professor Radiodiagnosis, Ain Shams University, for unexampled kindness and support.

I am also delighted to express my deepest gratitude and thanks to **Dr. Iman Ali El Agouza,** Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. Doaa Gamal Eissa,** Associate Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I would like to heartily express my thanks to my family, friends and colleagues for their support till this work was completed. My sincere thanks and appreciation to all our patients who participated in this study, in the hopes that this work will help us serve them, and all other patients, with the best level of care possible. May God bless them all.

List of Tables

Table Number	Table Name	Page
1	Triggering events for ADEM.	4
2	Proposed paediatric ADEM diagnostic criteria.	13
3	Differential Diagnosis of ADEM guided by radiological pattern	39
4	Red Flags in ADEM Diagnosis.	40
5	Post infectious encephalitis/encephalomyelitis CNS spectrum overlap disorders	51
6	Management of acute hemorrhagic leukoencephalomyelitis.	53
7	Risk Factors for Multiple Sclerosis Following an acute demyelinating event.	66
8	Subsequent Diagnosis of Multiphasic Acute Disseminated Encephalomyelitis and Multiple Sclerosis in Paediatric Acute Disseminated	67
	Encephalomyelitis Cohorts	

9	Demographic & clinical characteristics of the studied patients.	76
10	Blood* investigations done for the studied	82
	patients.	
11	CSF* analysis done for the studied patients.	83

List of Figures

Figure Number	Figure Name	Page
1	Diffuse perivenular microglial reaction in ADEM.	10
2	Algorithm for diagnosis of multiple sclerosis (MS) in a pediatric patient.	17
3	Potential location of lesions in patients with acquired demyelination.	20
4	(A-B) Axial T2-weighted images demonstrate multifocal, asymmetric lesions of acute disseminated encephalomyelitis. (C) Coronal fluid-attenuated inversion recovery image demonstrates asymmetric involvement of thalami in addition to white matter lesions in acute disseminated encephalomyelitis.	21
5	(A) Axial T2-weighted image demonstrates white matter involvement in acute disseminated encephalomyelitis. The lesions are (B) hyperintense on apparent diffusion map and (C) iso-intense on diffusion-weighted image consistent with vasogenic edema.	25

6	(A) Axial CT prior to decompression showing effacement of the right ventricle and midline shift (arrowed). (B) Axial CT following decompression in which brain herniates through the skull. The midline shift and ventricular effacement have improved. (C) Axial T2 weighted MRI indicating widespread white matter hyper-intensity consistent with edematous changes (arrowed). (D) Histology of the biopsy of the right cerebral hemisphere Staining for CD3 confirms perivascular T lymphocytes in the cerebral white	34
7	matter. Polymorphs and macrophages were also present. (A) Axial T2-weighted image and (B) Coronal T2-weighted image demonstrate diffuse, large, bilateral, and asymmetric white matter lesions in acute disseminated encephalomyelitis.	57
8	(A) Coronal T2-weighted image and (B) Axial T2-weighted image showing tumor-like demyelination of the right hemisphere with mass effect and shift of midline (biopsy confirmed).	60

_		
9	Percentage of males and females among studied	77
	Patients.	
10	Seasonal predilection in disease onset among the	77
	studied subjects.	
11	Vaccines preceding disease presentation among	78
	post-vaccinal cases (total n=8).	
12	Infections preceding disease presentation among	78
	post-infectious cases (n=9).	
13	Initial disease presentation among the studied	79
	patients.	
14	Types of seizures in convulsing patients (n=15).	79
15	Patterns of abnormal findings in neurological	80
	examination among the studied patients.	
16	Patterns of lateralization on examination (n=4).	80
17	Type of cranial neuropathy (n=9).	81
18	Types of movement disorders among patients	81
	(n=8).	
19	Results of CT brain done for the studied patients.	84

20	Symmetry of lesions in MRI of the studied patients.	85
21	Distribution of lesions in MRI of the studied patients (n=21).	85
22	Size of lesions on MRI of the studied patients (n=21).	86
23	Diffusion Restriction in MRI lesions in the studied patients (n=21).	86
24	Post Contrast enhancement in MRI lesions in the studied patients (n=14).	87
25	Lesions associated with positive mass effect/brain edema on MRI (n=21).	87
26	Axial MRI view of a 1.5 years old girl with ADEM featuring (A) T2 and (B) FLAIR sequences showing Periventricular Leukodystrophy like demyelination. (C) Lesions showed increased ADC values denoting facilitated diffusion "vasogenic edema".	88
27	FLAIR sequence showing bilateral asymmetrical irregular "small" lesions in a 9 years old boy with ADEM.	88

	showing asymmetrical involvement and rather	
	"large" confluent lesions more prominent on the	
	left side. The lesions are hypointense in T1 (A),	
	hyperintense in T2 (B) and FLAIR (C) sequences.	
	DWI (D) shows apparent diffusion restriction due	
	to "T2 shine through". (E) T2 sequence from	
	follow up MRI obtained after 3 months showing	
	almost total resolution of lesions.	
29	EEG findings among the studied patients (n=15).	90
30	EEG abnormalities among the studied patients	90
	(n=10).	
31	The first line treatment (immune-modulating	91
	therapy) given to the studied patients.	
32	The need for 2 nd line immunomodulation among	92
	the studied patients.	
33	Overview of clinical outcome among treated and	93
	untreated patients.	
34	Type of neurological deficits seen in surviving	94
	patients at 3 months (n=19).	
35	Types of motor affection at the 12 weeks	94

	evaluation.	
36	Follow up MRI obtained after three months in the	95
	studied patients.	
37	MRI obtained after three months in treated versus	96
	untreated cases.	
38	Follow up MRI obtained after over one year in	97
	cases; divided into treated and untreated group.	

Introduction

Acquired demyelinating syndromes (ADS) may be monofocal or polyfocal. If a single lesion within the CNS causes the symptomatology it is designated as monofocal, and if multiple lesions are accountable for the symptoms, it is designated as polyfocal. Polyfocal acquired demyelination that is accompanied by encephalopathy is diagnosed as acute disseminated encephalomyelitis (ADEM) (*Krupp et al.*, 2007).

According to a Canadian study of 219 children with ADS, the commonest type of demyelination was optic neuritis (23 percent), followed by ADEM and transverse myelitis, each found in twenty two percent. The predilection to develop one type of demyelination as opposed to another varies in different age groups. Certain types of ADS are associated with a higher risk of progress to multiple sclerosis (MS) than others (*Banwell et al.*, 2009).

ADEM is mainly a disease of the young, mostly seen in children less than 10 years of age (*Tenembaum et al.*, 2002). It has no specific ethnic distribution (*Leake et al.*, 2004), yet it is slightly more common in boys (*Tenebaum et al.*, 2007).

In most cases of ADEM a clear precedent event can be