

Ain Shams University Faculty of Science

IMMOBILIZATION AND SOLIDIFICATION OF SOME LOW AND INTERMEDIATE LEVEL RADIOACTIVE WASTES IN SOME PETROLEUM PRODUCTS

A PhD Thesis Submitted

By

Eman Ahmed Youssef Mohammed

M. Sc. (Physical and Inorganic Chemistry)

To

Chemistry Department Faculty of Science Ain Shams University

2013

IMMOBILIZATION AND SOLIDIFICATION OF SOME LOW AND INTERMEDIATE LEVEL RADIOACTIVE WASTES IN SOME PETROLEUM PRODUCTS

A PhD Thesis Submitted By

Eman Ahmed Youssef Mohammed

M. Sc. (Physical and Inorganic Chemistry)

For Degree doctor of philosophy of Science (Chemistry)

Supervised By

Prof. Dr. Salah Abdel Ghany Abo El-Enein

Prof. of Physical Chemistry Faculty of Science-Ain Shams University

Dr. Belal Hassan El-Gammal

Assistant Prof. of Radiation Chemistry Hot Laboratories Center Atomic Energy Authority

Prof. Dr. Ibrahim M. El-Naggar

Prof. of Physical Chemistry Hot Laboratories Center Atomic Energy Authority

Dr. Gehan M. Ibrahim

Assistant Prof. of Radiation Chemistry Hot Laboratories Center Atomic Energy Authority

To

Chemistry Department
Faculty of Science-Ain Shams University
2013

Approval Sheet for Submission

A Thesis Title

IMMOBILIZATION AND SOLIDIFICATION OF SOME LOW AND INTERMEDIATE LEVEL RADIOACTIVE WASTES IN SOME PETROLEUM **PRODUCTS**

A thesis Submitted By

Eman Ahmed Youssef Mohammed

M.Sc. (Physical and Inorganic Chemistry)

This thesis has been approved for submission by supervisors

Tł	nesis Advisors:	Signature
1-	Prof. Dr. Salah Abdel Ghany Abo El-Enein Prof. of Physical Chemistry Faculty of Science-Ain Shams University	
2-	Prof. Dr. Ibrahim M. El-Naggar Prof. of Physical Chemistry Hot Laboratories Center Atomic Energy Authority	
3-	Dr. Belal H. El-Gammal Assistant Prof. of Radiation Chemistry Hot Laboratories Center Atomic Energy Authority	
4-	Dr. Gehan M. Ibrahim Assistant Prof. of Radiation Chemistry Hot Laboratories Center Atomic Energy Authority	redit
	\mathbf{c}	ı Cuii

Head of the Department of Chemistry

Prof. Dr./ Maged Shafik Antonious

بسم الله الرحمن الرحيم

"وعلمك مالم تكن تعلم وكان فضل الله عليك عظيمه

صدق الله العظيم

سورة النساء (آية: ١١٣)

ACKNOWLEDGEMENT

At first I would like to knee praying to **ALLAH**, the Lord of the world for the help to do this work.

I express my sincere gratitude and gratefulness to **Prof. Dr. Ibrahim M. El-Naggar**, professor of Physical Chemistry, Hot Labs. Center, Atomic Energy Authority (AEA), for suggesting the point of research, direct supervision guidance, continuous encouragement, valuable comments and discussion, reading the manuscript, his insight on both the professional and personal levels which gave me the greatest helps to accomplish this study.

I would like to express my deep thanks to **Prof. Dr. Salah Abdel Ghany Abo El-Enein**, professor of Physical Chemistry, Faculty of Science,
Ain Shams University, for sponsoring this work and his continuous encouragement.

My deep thanks to **Dr. Belal H. El-Gammal** and **Dr. Gehan M. Ibrahim** Assistant professor of Radiation Chemistry, Hot Labs. Center, Atomic Energy Authority (AEA), for his interest, encouragement and valuable revision of the thesis.

Finally, I would like to thanks all the staff members and colleagues of Hot Labs. Center, for their kind help and sweet cooperative interactions.

Eman Ahmed Youssef elkady

LIST OF TABLES

		Page
Table (1)	Important properties of radioactive waste used as criteria for classification	5
Table (2)	General Comparison of Organic and Inorganic Ion Exchangers	23
Table (3)	Summary Comparison Of Immobilization Processes	36
Table (4)	Application of typical cement types	39
Table (5)	The main chemicals used.	52
Table (6)	Chemical Composition of Ordinary Portland cement	53
Table (7)	Summary preparation of cement and cement based bitumen pastes.	62
Table (8)	The synthesis and properties of polyacrylamide composite exchangers.	70
Table (9)	Chemical stability of the composite ion exchangers (SAM, FAM and NORAM) at different acid concentrations.	72
Table (10)	Ion exchange capacity of various exchanging ions on polyacrylamide stannic (IV) silicate (SAM) fibrous composite cation-exchanger.	89
Table (11)	Ion exchange capacity of various exchanging ions on polyacrylamide stannic (IV) antimonate (FAM) fibrous composite cation-exchanger.	89

Table (12)	Ion exchange capacity of various exchanging ions on polyacrylamide stannic (IV) silicoantimonate (NORAM) fibrous composite cation-exchanger.	89
Table (13)	Comparison of IEC values of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions for various composite ion exchangers	90
Table (14)	Comparison of IEC values of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions for various inorganic ion exchangers	91
Table (15)	Separation factor for Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on SAM-sorbent	121
Table (16)	Separation factor for Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on FAM-sorbent.	122
Table (17)	Separation factor for Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on NORAM- sorbent.	122
Table (18)	Thermodynamic parameters for adsorption of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on SAM Sorbent.	147
Table (19)	Thermodynamic parameters for adsorption of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on FAM Sorbent.	149
Table (20)	Thermodynamic parameters for adsorption of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on NORAM sorbent.	151
Table (21)	Langmuir constants for sorption of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on SAM-sorbent.	170
Table (22)	Langmuir constants for sorption of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on FAM-sorbent.	170
Table (23)	Langmuir constants for sorption of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on NORAM-sorbent.	171
Table (24)	Effect of water/cement (OPC) ratio on the compressive strength (Kg/cm ²).	176
Table (25)	Effect of cement/bitumen A (ceroplastics) ratio on the compressive strength (Kg/cm ²)	176
Table (26)	Effect of cement/bitumen B (cerotect) ratio on the compressive strength (Kg/cm ²)	176
Table (27)	Effect of polyacrylamide stannic (IV) silicate (SAM) percent on the compressive strength (Kg/cm ²)	177

Table (28)	Initial and finial setting time of different cement pastes.	177
Table (29)	Mean apparent diffusion coefficient of ¹³⁴ Cs, ⁶⁰ Co and ⁸⁵ Sr radionuclides through the studied matrices (cm ² /s).	201
Table (30)	Mean apparent diffusion coefficient of ¹³⁴ Cs, ⁶⁰ Co and ⁸⁵ Sr radionuclides through the studied matrices (cm ² /s).	202
Table (31)	Mean leachability index of ¹³⁴ Cs, ⁶⁰ Co and ⁸⁵ Sr radionuclides through the studied matrices.	204
Table (32)	Mean leachability index of ¹³⁴ Cs, ⁶⁰ Co and ⁸⁵ Sr radionuclides through the studied matrices.	205

LIST of FIGURES

		Page
Figure (1)	Basic steps in radioactive waste management.	9
Figure (2)	The distillation of bitumen.	46
Figure (3)	Schematic representation of acrylamide monomer polymerization.	69
Figure (4)	X-ray diffraction patterns of the polyacrylamide Sn(IV) silicate (SAM).	74
Figure (5)	X-ray diffraction patterns of the poly acrylamide $Sn(IV)$ antimonate (FAM) .	75
Figure (6)	X-ray diffraction patterns of the polyacrylamide Sn (IV) silico antimonate (NORAM).	76
Figure (7)	Infrared spectra of the polyacrylamide Sn (IV) silicate (SAM).	81
Figure (8)	Infrared spectra of the polyacrylamide Sn (IV) antimonate (FAM).	82
Figure (9)	Infrared spectra of the polyacrylamide Sn (IV) silicoantimonate (NORAM) .	83
Figure (10)	Thermal analysis diagrame of the SAM sorbent	84
Figure (11)	Thermal analysis diagrame of the FAM sorbent	85
Figure (12)	Thermal analysis diagrame of the NORAM sorbent	86
Figure (13)	Effect of V/m ratios on % uptake for Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on polyacrylamide stannic (IV) silicates (SAM) sorbent at pH 4 and $25\pm1^{\circ}C$.	93
Figure (14)	Effect of V/m ratios on % uptake for Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on polyacrylamide stannic (IV) silicates (FAM) sorbent at pH 4 and $25\pm1^{\circ}C$.	94
Figure (15)	Effect of V/m ratios on % uptake for Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on polyacrylamide stannic (IV) silicates (NORAM) sorbent at pH 4 and $25\pm1^{\circ}C$.	95
Figure (16)	Effect of different concentration on the loading (meq. /g) of Cs ⁺ on on	97

	SAM sorbent at different reaction temperatures and pH 4.	
Figure (17)	Effect of different concentrations on the loading (meq. /g) of Co^{2+} ion on SAM sorbent at different reaction temperatures and pH 4.	98
Figure (18)	Effect of different concentrations on the loading (meq. /g) of Sr^{2+} ion on SAM sorbent at different reaction temperatures and pH 4.	99
Figure (19)	Effect of different concentrations on the loading (meq. $/g$) of Cd^{2+} ion on SAM sorbent at different reaction temperatures and pH 4.	100
Figure (20)	Effect of different concentrations on the loading (meq. /g) of Cs^+ ion on FAM sorbent at different reaction temperatures and pH 4.	101
Figure (21)	Effect of different concentrations on the loading (meq. /g) of Co^{2+} ion on FAM sorbent at different reaction temperatures and pH 4.	102
Figure (22)	Effect of different concentrations on the loading (meq. /g) of Sr^{2+} ion on FAM sorbent at different reaction temperatures and pH 4.	103
Figure (23)	Effect of different concentrations on the loading (meq./g) of Cd ²⁺ ion on FAM sorbent at different reaction temperatures and pH 4.	104
Figure (24)	Effect of different concentrations on the loading (meq. /g) of Cs ⁺ ion on NORAM sorbent at different reaction temperatures and pH 4.	105
Figure (25)	Effect of different concentrations on the loading (meq./g) of Co ²⁺ ion on NORAM sorbent at different reaction temperatures and pH 4.	106
Figure (26)	: Effect of different concentrations on the loading (meq. /g) of Sr^{2+} ion on NORAM sorbent at different reaction temperatures and pH 4.	107
Figure (27)	Effect of different concentrations on the loading (meq. /g) of Cd ²⁺ ion on NORAM sorbent at different reaction temperatures and pH 4.	108
Figure (28)	Effect of pH on the distribution coefficients of Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on SAM sorbent.	114
Figure (29)	Effect of pH on the distribution coefficients of Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on FAM sorbent.	115
Figure (30)	Effect of pH on the distribution coefficients of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on NORAM sorbent.	116
Figure (31)	Effect of pH on the distribution coefficients of Cs ⁺ ions on SAM, FAM and NORAM sorbents.	117
Figure (32)	Effect of pH on the distribution coefficients of Co ²⁺ ions on SAM, FAM	118

and NORAM sorbents.

Figure (33)	Effect of pH on the distribution coefficients of Sr ²⁺ ions on SAM, FAM and NORAM sorbents.	119
Figure (34)	Effect of pH on the distribution coefficients of Cd ²⁺ ions on SAM, FAM and NORAM sorbents.	120
Figure (35)	Distribution coefficient of Cs ⁺ ions on SAM sorbent at different concentrations and different reaction temperatures at pH 4.0	126
Figure (36)	Distribution coefficient of Cs ⁺ ions on FAM sorbent at different concentrations and different reaction temperatures at pH 4.0	127
Figure (37)	Distribution coefficient of Cs ⁺ ions on NORAM sorbent at different concentrations and different reaction temperatures at pH 4.0	128
Figure (38)	Distribution coefficient of Co ²⁺ ions on SAM sorbent at different concentrations and different reaction temperatures at pH 4.0	129
Figure (39)	Distribution coefficient of Co ²⁺ ions on FAM sorbent at different concentrations and different reaction temperatures at pH 4.0	130
Figure (40)	Distribution coefficient of Co ²⁺ ions on NORAM sorbent at different concentrations and different reaction temperatures at pH 4.0	131
Figure (41)	Distribution coefficient of Sr^{2+} ions on SAM sorbent at different concentrations and different reaction temperatures at pH 4.0	132
Figure (42)	Distribution coefficient of Sr^{2+} ions on FAM sorbent at different concentrations and different reaction temperatures at pH 4.0	133
Figure (43)	Distribution coefficient of Sr^{2+} ions on NORAM sorbent at different concentrations and different reaction temperatures at pH 4.0	134
Figure (44)	Distribution coefficient of Cd ²⁺ ions on SAM sorbent at different concentrations and different reaction temperatures at pH 4.0	135
Figure (45)	Distribution coefficient of Cd ²⁺ ions on FAM sorbent at different concentrations and different reaction temperatures at pH 4.0	136
Figure (46)	Distribution coefficient of Cd ²⁺ ions on NORAM sorbent at different concentrations and different reaction temperatures at pH 4.0	137
Figure (47)	Distribution coefficient of Cs ⁺ ions on SAM, FAM and NORAM sorbents at different concentrations at 30°C reaction temperatures at pH 4.0	138

Figure (48)	Distribution coefficient of Co ²⁺ ions on SAM, FAM and NORAM sorbents at different concentrations at 30°C reaction temperatures at pH 4.0	
Figure (49)	Distribution coefficient of Sr^{2+} ions on SAM, FAM and NORAM sorbents at different concentrations at $30^{\circ}\mathrm{C}$ reaction temperatures at pH 4.0	140
Figure (50)	Distribution coefficient of Cd ²⁺ ions on SAM, FAM and NORAM sorbents at different concentrations at 30°C reaction temperatures at pH 4.0	141
Figure (51)	Effect of different concentrations on the distribution coefficients of Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on SAM sorbent at reaction temperature $30^{\circ}C$ and pH 4.	142
Figure (52)	Effect of different concentrations on the distribution coefficients of Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on FAM sorbent at reaction temperature 30oC and pH 4.	143
Figure (53)	Effect of different concentrations on the distribution coefficients of Cs ⁺ , Co ²⁺ , Sr ²⁺ and Cd ²⁺ ions on N0RAM sorbent at reaction temperature 30°C and pH 4.	144
Figure (54)	Van,t Hoff plot of the adsorption of Cs^{+} , Co^{2+} , Sr^{2+} and Cd^{2+} ions on SAM sorbent at pH=4 .	148
Figure (55)	Van,t Hoff plot of the adsorption of Cs^+ , Co^{2+} , Sr^{2+} and Cd^{2+} ions on FAM sorbent at pH=4 .	150
Figure (56)	Van,t Hoff plot of the adsorption of Cs ⁺ , Co ²⁺ ,Sr ²⁺ and Cd ²⁺ ions on NORAM sorbent at pH =4.	152
Figure (57)	Langmuir isotherm for Cs ⁺ ions on SAM sorbent at different reaction temperatures and at pH 4.	158
Figure (58)	Langmuir isotherm for Co ²⁺ ions on SAM sorbent at different reaction temperatures and at pH 4.	159
Figure (59)	Langmuir isotherm for Sr^{2+} ions on SAM sorbent at different reaction temperatures and at pH 4.	160
Figure (60)	Langmuir isotherm for Cd ²⁺ ions on SAM sorbent at different reaction temperatures and at pH 4.	161
Figure (61)	Langmuir isotherm for Cs ⁺ ions on FAM sorbent at different reaction temperatures and at pH 4.	162

Figure (62)	Langmuir isotherm for Co ²⁺ ions on FAM sorbent at different reaction temperatures and at pH 4.	
Figure (63)	Langmuir isotherm for Sr^{2+} ions on FAM sorbent at different reaction temperatures and at pH 4.	164
Figure (64)	Langmuir isotherm for Cd^{2+} ions on FAM sorbent at different reaction temperatures and at pH 4.	165
Figure (65)	Langmuir isotherm for Cs ⁺ ions on NORAM sorbent at different reaction temperatures and at pH 4.	166
Figure (66)	Langmuir isotherm for Co ²⁺ ions on NORAM sorbent at different reaction temperatures and at pH 4.	167
Figure (67)	Langmuir isotherm for Sr ²⁺ ions on NORAM sorbent at different reaction temperatures and at pH 4.	168
Figure (68)	Langmuir isotherm for Cd ²⁺ ions on NORAM sorbent at different reaction temperatures and at pH 4.	169
Figure (69)	Cumulative leach fraction of cesium ions in different cement pastes mixed with bitumen A.	180
Figure (70)	Cumulative leach fraction of Cobalt ions in different cement pastes mixed with bitumen A	181
Figure (71)	Cumulative leach fraction of strontium ions in different cement pastes mixed with bitumen A	182
Figure (72)	Cumulative leach fraction of ceasium ions in different cement pastes mixed with bitumen B	183
Figure (73)	Cumulative leach fraction of Cobalt ions in different cement pastes mixed with bitumen B.	184
Figure (74)	Cumulative leach fraction of Strontium ions in different cement pastes mixed with bitumen B.	185
Figure (75)	Variation of incremental fraction of caesium in different cement pasts mixed with bitumen (A) as a function of time.	187
Figure (76)	Variation of incremental fraction of Cobalt ions in different cement pasts mixed with bitumen (A) as a function of time	188
Figure (77)	Variation of incremental fraction of Strontium ions in different cement	189

	pasts mixed with bitumen (A) as a function of time	
Figure (78)	Variation of incremental fraction of Ceasium ions in different cement pastes mixed with bitumen B.	190
Figure (79)	Variation of incremental fraction of Cobalt ions in different cement pastes mixed with bitumen B.	191
Figure (80)	Variation of incremental fraction of Strontium ions in different cement pasts mixed with bitumen B.	192
Figure (81)	Variation of fraction leached of caesium in different cement pastes mixed with bitumen A.	195
Figure (82)	Variation of fraction leached of cobalt ions in different cement pastes mixed with bitumen A.	196
Figure (83)	Variation of fraction leached of strontium ions in different cement pastes mixed with bitumen A.	197
Figure (84)	Variation of fraction leached of Ceasium ions in different cement pastes mixed with bitumen B.	198
Figure (85)	Variation of fraction leached of Cobalt ions in different cement pastes mixed with bitumen B.	199
Figure (86)	Variation of fraction leached of Strontium ions in different cement pastes mixed with bitumen B.	200

List of abbreviations

The following Table describes the significance of various abbreviations used throughout the thesis.

Abbreviation	Meaning
SAM	Polyacrylamide stannic (IV) silicate
FAM	Polyacrylamide stannic (IV) antimonate
NORAM	Polyacrylamide stannic (IV) silicoantimonate
$\mathbf{G}^{\mathbf{o}}$	free energy changes
D	diffusion coefficient
EPA	Environmental Protection Agency
S^{o}	entropy changes
OPC	Ordinary Portland Cement
IEC	Ion exchange capacity
$\mathbf{k_d}$	distribution coefficient
C_{e}	the equilibrium concentration of the ions in the solution (M)
C_{ads}	the amount sorbed onto the sorbent
CLF	cumulative leach fraction
DOE	Department Of Energy