Early detection of posterior interosseous neuropathy in patients with suspected lateral epicondylitis

Thesis

submitted for partial fulfillment of the master degree in Physical Medicine, Rheumatology and Rehabilitation

By

Marwa Ahmed Kamel Hassan

*M.B., B.Ch*Faculty of medicine- Ain Shams University

Under supervision of Prof. Dr. \ Mohammed Ragaai El Helow

Professor of Physical Medicine, Rheumatology and Rehabilitation

Faculty of medicine- Ain Shams University

Prof. Dr. \Mohammed Aly Elwy

Professor of Physical Medicine, Rheumatology and Rehabilitation

Faculty of medicine- Ain Shams University

Dr.\ Eman Mahmoud Ghaniema

Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation

Faculty of medicine- Ain Shams University

Faculty of medicine Ain Shams University

الكشف المبكر عن وجود اعتلال العصب بين العظمى الخلفي في مرضى التهاب النتوء فوق اللقمى العضدى الوحشى

رسالة

توطئة للحصول على درجة الماجستير في الطب الطبيعي والروماتيزم والتأهيل مقدمة من

أحمد كامل حسن

بكالوريوس الطب والجراحة

كلية الطب - جامعة عين شمس

تحت إشراف ا**لأستاذ الدكتور/محمد رجائي الحلو**

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب - جامعة عين شمس

الأستاذ الدكتور / محمد على علوى

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب جامعة عين شمس

/ إيمان محمود غنيمة

أستاذ مساعد الطب الطبيعي والروماتيزم والتأهيل كلية الطب جامعة عين شمس

حليه الطب جامعه عين

كلية الطب

جامعة عين شمس

7.11

Acknowledgments

First of all, many thanks will never be enough to express my endless gratitude to **ALLAH** for giving me the strength and support to carry out this work.

I would like to express my deep appreciation wrapped with great respect to *Prof. Dr. Mohammed Ragaai El Helow*, Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for his encouragement & expert supervision.

I am greatly honored to express my gratitude to *Prof. Dr. Mohammed Aly Elwy*, Professor of Physical Medicine Rheumatology and Rehabilitation, Faculty of Medicine, Ain Shams University, for his precious advices and valuable observations.

Special thanks go to *Dr. Eman Mahmoud Ghaniema*, Assistant Professor of Physical Medicine Rheumatology and Rehabilitation, Ain Shams University, who not only encouraged me but also provided tireless help and continuous guidance throughout this work.

Many thanks to all professors, staff and colleagues in our department, for offering help whenever I needed during this research.

I would like to express my great honor and thanks to *Prof. Dr. Mervat Abdel-Hamid Reda*, Professor of Physical Medicine Rheumatology and Rehabilitation Department, Ain Shams University, and to *Prof. Dr. Atef Ibrahim El-Ghaweet*, Professor of Rheumatology and Rehabilitation Department, Faculty of Medicine, Mansoura University for honoring me in discussing this work.

Finally, I must thank my family for their encouragement and support not only during the period of this research but also during my whole life.

Contents

		Page
*	Introduc	tion and Aim of the work
*	Review	of literature5
	0	Lateral epicondylitis
	0	Epidemiology 5
	0	Anatomy
	0	Pathophysiological mechanisms of elbow tendinosis
	0	Clinical evaluation
	0	Posterior interosseous nerve syndrome24
	0	Radiological analysis
	0	Electrophysiological testing of PINS40
	0	Management of lateral epicondylitis
		■ Conservative treatment
		Operative treatment

	o Management of PIN entrapment	57
	■ Conservative treatment	57
	Operative treatment	60
*	Patients and Methods.	66
*	Results	77
*	Discussion	02
*	Summary and Conclusion	08
*	Recommendations	11
*	References	12
.	Arabic Summary	

List of Abbreviations

ADL	ADL Activity of daily living	
APL	Abductor pollicis longus	
AUC	Area under curve	
BR	Brachioradialis	
CEO	common extensor origin	
CI	confidence interval	
cm	centimeter	
CMAP	Compound muscle action potential	
DC	Direct Current	
DXM	Dexamethasone	
ECRB	Extensor carpi radialis brevis	
ECRL	Extensor carpi radialis longus	
ECU	Extensor carpi ulnaris	
EI	Extensor indicis muscle	
EMG	Electromyography	
EPB	Extensor pollicis brevis	
EPL	Extensor pollicis longus	
ESWT	Extracorporeal shock wave therapy	
IR	Internally rotated	
LE	Lateral epicondylitis	
LLLT	Low level laser therapy	
Lt	Left	
mA	milli Ampere	
msec	milli second	
m/sec	meter/second	
mv	milli volt	

MRI	Magnetic Resonance Imaging
MUAPs.	Motor unit action potentials
NCS	Nerve conduction study
NCV	Nerve conduction velocity
NSAIDs.	Nonsteroidal Anti-inflammatory drugs
PIN	
PINS	Posterior interosseous nerve syndrome
Rt	Right
RTS	Radial tunnel syndrome
S.C.T	Supinator compression test
SD	Standard deviation
SE	Standard error
SNAP	Sensory nerve action potential
SSRN	Superficial sensory radial nerve
TENS	Transcutaneous electrical nerve stimulation
US	Ultrasonography
VAS	Visual Analogue Scale

List of Figures

Figure Page	
1) Posterolateral view of the elbow	9
2) Anterior view of the elbow	.10
3) Photograph depicting the radial nerve as it divides into two terminal branches, the SSRN and the PIN	
4) Photograph showing the PIN as it passes between the superficial and deep heads of the supinator muscle	12
5) Photograph of a cadaveric right forearm specimen illustrate the multiple muscular branches of the PIN	_
6) Magnetic resonance imaging scans of the extensor compartment of a patient's right forearm	9
7) Chair and Thomson tests	22
8) Supinator compression test.	23
9) Longitudinal sonogram of normal common extensor origin.	.30
10) Longitudinal sonogram shows small hypoechoic focus	.30

11) Longitudinal sonogram shows diffuse thickened hypoechoic
tendon31
12) Longitudinal sonogram of lateral collateral ligament
13) Power Doppler sonogram of lateral collateral ligament
14) Normal MRI image of the elbow(the left one)
15)Thickening and intermediate signal intensity of CEO consistent with lateral epicondylitis (the right one)
16) MRI of right forearm shows mass (arrow) along course of posterior interosseous nerve
17&18) normal appearance of thre radial nerve at the sonography of the elbow
19) Sonogram obtained longitudinally to right posterior interosseous nerve in PIN syndrome
20) Sonogram shows normal contralateral left posterior interosseous nerve

21) Sonogram obtained longitudinal to PIN shows section
through 1-mm-thick hypoechoic fibrous band that crosse
nerve immediately distal to mas
39
22) Radial innervated muscle and electrodiagnosis of foca radial injury
23) Wrist extension brace
24) Different shapes of counterforce brace45
25) Stretching of the extensor wad
26) Strengthing of the extensor wad
27) Autologous blood aspiration and injection52
28) Extensor tenodesis splint
29) Mill test
30 Supinator compression test
31) Nerve conduction device, Schwarzer Topas
equipment,Germany72
32) Site of recording at brachioradialis muscle72

33) Site of recording at extensor carpi ulnaris
muscle
34) Points of inching technique of EI muscle74
35) Comparison between different arm groups as regards Brachioradialis and Extensor carpi ulnaris latencies 81
36) Comparison between different arm groups as regards prolongation of distal latency
37) Comparison between different arm groups as regards amplitude
38) Comparison between S.C.T statuses as regards VAS score in affected arms (group A)
39) Comparison between S.C.T statuses as regards BR-ECU latency difference in group A
40) Comparison between S.C.T statuses as regards BR and ECU prolongations in affected arms of cases91
41) ROC curve of different nerve characteristics to confirm ECU prolongation(as an indicator for PIN entrapment)94
42) ROC curve of different nerve characteristics to confirm BR-ECU prolongation (as an indicator for PIN entrapment) 95

43) ROC curve of different nerve characteristics to confirm
supinator compression test (as an indicator for PIN
entrapment)96
44) Normal study of the PIN regarding BR, ECU latencies
45) Prolonged ECU latency and BR-ECU latency
difference 99
46) Normal parameters of the inching technique of the EI muscle
47) Decrease of the NCV of the segment between
points2&3 of the inching technique of the EI muscle101

List of Tables

Table Page	e
1) Studied arm groups	77
2) Comparison between case and control groudemographic characteristics.	
3) Clinical tests of the patients (as cases and arms	5) 78
4) Side of affected arms in group A	79
5) Comparison between different arm group dominance and laterality	
6) Comparison between case and control grou Brachioradialis (BR) & Extensor carpi ulnaris latency differences	(ECU) RT-LT
7) Comparison between different arm group Brachioradialis (BR) & Extensor carpi u latencies.	ulnaris (ECU)
8) Comparison between different arm group prolongation of distal latency	
9)Comparison between different arm group amplitude of extensor indicis muscle (EI) technique	using inching
10) Comparison between different arm groups as conduction velocity recorded from extensor using inching technique	indicis muscle

11) Correlation between VAS score and different parameters in affected arms (group A)
12) Comparison between Supinator compression test statuses as regards VAS score in affected arms (group A)87
13) Comparison between males and females as regards VAS score in affected arms (group A)
14) Comparison between criteria of nerve affection as regards VAS score in affected arms (group A)
15) Comparison between S.C.T statuses as regards parameters of nerve conduction in affected arms of cases
16) Comparison between Supinator compression test statuses as regards BR and ECU latencies in affected arms of cases (group A)
17) Diagnostic abilities of different nerve characteristics to confirm ECU prolongation (as an indicator for PIN entrapement)
18) Diagnostic abilities of different nerve characteristics to confirm BR-ECU latency difference (as an indicator for PIN entrapement
19) Diagnostic abilities of different nerve characteristics to confirm suptor compression test (as an indicator for PIN entrapement)
20) Value of BR-ECU ≥ 3.6 msec to differentiate SC test (as an indicator for PIN entrapement