PAIN MANAGEMENT FOR HIP SURGERIES

Essay

Submitted for Partial Fulfillment of Master Degree of Anesthesia

By
Mutaz Mahmoud Mohammed Eldershawy
(M.B.B. Ch.)

Supervision By Prof. Dr. Amir Ibrahim Salah

Professor of Anesthesia and Critical Care and Pain Management Faculty of Medicine - Ain Shams University

Prof. Dr. Hatem Saed Abd-El Hamid

Professor of Anesthesia and Critical Care and Pain Management

Faculty of Medicine - Ain Shams University

Dr. Dalia Ahmed Ibrahim

Lecturer of Anesthesia and Critical Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2016

First of all, I would like to express my deep gratitude to ATSAH for his care and generosity throughout my life.

I would like to express my sincere appreciation to **Prof. Dr. Amir Ibrahim Salah**, Professor of Anesthesia and Critical Care and Pain Management for his keen supervision and guidance and his overwhelming support that has been of great help throughout this work.

I am very thankful to Prof. Dr. Hatem Saed Abd-El Hamid, Professor of Anesthesia and Critical Care and Pain Management for his great support & effort throughout the whole work.

I would also like to express my great thanks to Dr. Dalia Ahmed Ibrahim, Lecturer of Anesthesia and Critical Care and Pain Management for the great effort he has done in this work and for helping me through it.

Mutaz Eldershawy

List of Contents

Title	Page No
List of Tables	
List of Figures	i
List of Abbreviations	ii
Introduction	1
Aim of the Work	
Post Operative Pain after Hip Surgery	4
Pharmacological Management	26
Non-Pharmacolgical Management	67
Summary	92
References	94
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Examples of primary afferent an horn receptors and ligands	
Table (2):	Metabolic and endocrine responsinjury	
Table (3):	Distal branches of lumbar plexus	23

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	The main ascending and descending pain pathways.	
Fig. (2):	The injury response	
Fig. (3):	Numerical rating scale	20
Fig. (4):	Lumbar plexus anatomy	22
Fig. (5):	Femoral nerve anatomy	24

List of Abbreviations

Abb.	Full term
5HT	: 5-hydroxytryptamine receptor
5HT3	: 5 Hydroxy Tryptaline 3
A2a	: Adenosine 2 a receptor
ACLS	: Advanced Cardiac Life support
ACTH	: Adrenocorticotropic hormone
ADH	: Anti Diuretic Hormone
AHA	: American Heart Association
AMPA	: α-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid receptor
ASA	: American Society of anesthesia
ASIC	: Acid Sensing Ion Channel
В	: Bradykinin receptor
BBB	: Blood Brain Barrier
BDNF	: Brain Derived Neurotrophic Factor
BK	: Bradykinin
BMI	: Body mass index
CB1	: Cannabinoid 1
CC2	: Chemokine 2
CC3	: Chemokine 3
cFNB	: Continuous femoral nerve block
CGRP	: Calcitonin Gene Related Peptide
cLPB	: Continuous lumbar plexus block
CNS	: Central Nervous System
COX 1	: Cyclooxygenase

List of Abbreviations (Cont...)

Abb.	Full term
CPNB:	Continuous peripheral nerve block
CPSP::	Chronic post surgical pain
CSA:	Continuous spinal Anasethia
CSF:	Cerebro Spinal Fluid
$CV \dots \dots :$	Cardio vascular
CYP3A4:	Cytochrome P450 3A4
DOR:	Delta Opioid Receptor
DRASIC:	Dorsal root ganglion acid sensitive channel
DRG:	Dorsal Root Ganglia
DVT:	Deep Vein Thrombosis
$\mathbf{EP}\dots\dots:$	E prostanoid receptors
EREM:	Extended Release Epidural Morphine
ERP::	Enhanced recovery program
FDA:	Food & Drug Administration
FFA::	Free Fatty Acids
FIAU:	Fast-track arthroplasty unit
FNB:	Femoral nerve block
GA:	General anasethia
GABA:	Gama amino butyric acid
$GI \dots \dots :$	Gastro Intestinal
H1::	Histamine
H3G::	Hydro morphine 3 glucuronide

List of Abbreviations (cont...) Full term

Abb.	Full term
HA::	Histamine
Hb::	Heamoglobin
IASP::	International Association of Study of Pain
ICU::	Intensive care unit
iGluR::	Ionotropic glutamate receptor
IL10:	Interleukin 10
IL1B::	Interleukin 1B
IL6:	Interleukin 6
IM:	Intra Muscular
IP::	Prostaglandin I receptor
ITS:	Iontophoretic transdermal system
IV:	Intra Venous
KOR::	Kappa Opioid Receptor
LA:	Local Anesthetic
LIA:	Local infiltration analgesia
LOS:	Length of stay
LP:	Lumbar Plexus
LPB::	Lumbar Plexus Block
LPT:	Long term potentiation
M1:	Desmethyl tramal
M3G::	Morphine 3 glucuronide
M6G:	Morphine 6 glucuronide
MAM:	Mono Acetyl Morphine

List of Abbreviations (Cont...)

Abb.	Full term
mGluR:	Metabotropic glutamate receptor
MIS:	Minimally invasive surgery
MOR:	Moe Opioid Receptor
NERP:	Norwich Enhanced Recovery Programme
NK:	Neurokinin
NLC:	Nucleus Locus Coenuleus
NMDA:	N-methyl-D-aspartate receptor
NMES:	Neuromuscular electrical stimulation
NO:	Nitric Oxide
NRS:	Numerical Rating Scale
NSAIDs:	Non steroid anti inflammatory drugs
nsNSAID:	Non selective non steroid anti inflammatory drug
ORADEs:	Opioid related adverse effects
PAG:	Peri Aquedectal Gray
PAR:	Proteinase-activated receptor
PCA:	Patient controlled analgesia
PCB:	Psoas compartment block
PCEA:	Patient controlled epidural analgesia
PCSNB::	Psoas compartment sacral nerve block
PDPH:	Post dural puncture headache

List of Abbreviations (Cont...)

Abb.	Full term
PEMF	: Pulsed electromagnetic fields
PGE2	: Prostaglandin E2
PGH	: Prostaglandin endoperoxide
PGI2	: Prostaglandin I2
PMDI	: Periarticular Multimodal Drug Injection
PNB	: Peripheral nerve block
POCD	: Post Operative cognitive dysfunction
PONV	: Post Operative Nausea and Vomiting
RA	: Regional anasethia
RCT	: Randomized clinical trial
RVM	: Rostro Ventro Medial
SCN9A	: Sodium channel, voltage gated, type IX alpha subunit
THA	: Total hip arthroplasty
TJA	: Total joint Arthroplasty
TNF	: Tumor Necrosis Factor
TNS	: Transient neurological syndrome
TRP	: Transient Receptor Potential
TRPV1	: Transient receptor potential vanilloid
VAS	: Visual Analogue Scale
VDS	: Verbal Descriptor Scale

Abstract

Therefore, if patients are not given good postoperative pain management they have an increased risk of chest infections, hypoxia and cardiac problems, pressure sores, deep vein thrombosis, depression, anxiety, anorexia, increased wound infection rates, etc. Anaesthesia for total hip and knee arthroplasty should provide stable intra-operative conditions and allow rapid patient recovery. Analgesic techniques should aim to provide optimal pain relief whilst minimizing side effects such as sedation, PONV, hypotension, and motor block. There is now good evidence that well-conducted regional analgesia can achieve these aims, leading to improved functional recovery facilitated by more rapid and effective joint rehabilitation. Opioids remain the mainstay of systemic analgesia for the treatment of moderate to severe acute pain. After operative fracture treatment, patients who take more opioids report greater pain intensity and less satisfaction with pain relief. Greater self-efficacy was the best determinant of satisfaction with pain relief. Evidence-based interventions to increase self-efficacy merit additional study for the management of postoperative pain during recovery from a fracture. Morphine remains the most widely used opioid for the management of pain and the standard against which other opioids are compared. The consistent efficacy of epidural analgesia has been well demonstrated. Regardless of analgesic agent used, location of catheter, type of surgery and type or time of pain assessment, it provided better pain relief than parenteral opioid administration.

Keywords: Pain Management; Hip Surgeries

Introduction

The International Association for the study of pain has defined pain as an unpleasant sensory and emotional experiences associated with actual or potential tissue damage (IASP Taxonomy Definitions, 2012).

Although acute or nociceptive pain is distinct from chronic pain, the boundaries are not well defined. Patients with acute pain usually experience resolution, whereas patients with chronic pain are unlikely to do so. Remember, that although acute pain has a foreseeable end it's management should be a high priority because acute pain may, when neglected, become chronic and persistent. While most patients experience nociceptive pain (that follows normal pain pathways), some may also experience neuropathic pain (nerve damage pain) (*Gray, 2008*).

The goal in postoperative pain management is to mobilize the person as early as possible, get them eating and drinking as early as appropriate and ensure they are able to cough and deep breathe. Therefore, if patients are not given good postoperative pain management they have an increased risk of chest infections, hypoxia and cardiac problems, pressure sores, deep vein thrombosis, depression, anxiety, anorexia, increased wound infection rates, etc (Buvanendran et al., 2003).

According to Woolf, there are three classes of pain: nociceptive pain, inflammatory pain which is associated with tissue damage and the infiltration of immune cells, and pathological pain which is a disease state caused by damage to the nervous system (neuropathic pain) or by its abnormal function (Woolf, 2010).

Traditional methods of treating pain following total joint arthroplasty involve postoperative oral narcotic medications and intravenous patient-controlled analgesia. But such opioid use is not without side effects, including nausea, vomiting, pruritus, sedation, dizziness, bladder dysfunction, reduced gastrointestinal motility (which may lead to ileus), and sleep pattern disturbance (Joshi 2005).

There are several incisions for hip joint surgeries, defined by their relation to the gluteus medius. The approaches are posterior (Moore), lateral (Hardinge or Liverpool), anterolateral (Watson-Jones), anterior (Smith-Petersen) and greater trochanter osteotomy. There is no compelling evidence in the literature for any particular approach, but consensus of professional opinion favours either modified anterolateral (Watson-Jones) or posterior approach (*Pai*, 1997).

Pre-emptive analgesia, defined as "analgesic intervention provided before surgery to prevent or reduce subsequent pain" attempts to prevent the establishment of central sensitization and therefore reduce pain intensity and decrease analgesic requirements (Unlugenc et al., 2003).

AIM OF THE WORK

The aim of this work is to focus in different peri-operative pain management techniques for hip surgery.

gery 📚

POST OPERATIVE PAIN AFTER HIP SURGERY

IASP definition of pain:

The International Association for the Study of Pain's widely used definition states: "Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage." (the international association of the study of pain Last Updated: May 22, 2012).

Pain perception and nociceptive pathways

The neural processes underlying the encoding and processing of noxious stimuli are defined as 'nociception'. In addition to these sensory effects, the perception and subjective experience of 'pain' is multifactorial and will be influenced by psychological and environmental factors in every individual (*Zheng et al.*, 2015).

Peripheral nociceptors

The detection of noxious stimuli requires activation of peripheral sensory organs (nociceptors) and transduction into action potentials for conduction to the central nervous system. Nociceptive afferents are widely distributed throughout the body (skin, muscle, joints, viscera, meninges) and comprise both medium-diameter lightly myelinated A-delta fibres and