

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

OF THE COMMERCIALLY AVAILABLE 99Mo - 99m Te GENERATORS ELUTES A COMPARATIVE STUDY

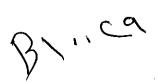
A THESIS

Submitted to the Department of physics, Aswan Faculty of Science, South Valley University

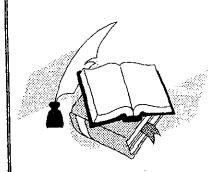
For the Degree of M . Sc. (PHYSICS)

by

Ali Gad El-Rab Abd Alla (B.Sc. 1992)


Supervision

Prof. Mohamed A. Abdeen ,MD
Prof of Radiotherapy and Nuclear Medicine Dept.
Cairo University

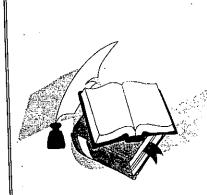

Dr. Mohamed A.Abd El-Rahman

Assoc .Prof. of physics physics Department Faculty of science, Aswan **Dr. Abd Alla Al-Tawil MD**Assoc. Prof. Nuclear Medicine
Nuclear Medicine Dept
Faculty of Medicine Cairo

2000

ACKNOWLEDGMENT

ACKNOWLEDGEMENT


All gratitude is due to God almighty who guided and aided me to bring forth to light this thesis I wish to express my sincere thanks to my supervisor Prof. M. A. Abdeen from Radiotherapy & Nuclear Medicine Department, Faculty of Medicine, Cairo University, and Head of Aswan oncology center, for suggesting the present study, for indeed beyond my power of expression. Such gratitude. I have towards him is profoundly felt but hardy expressible. I will never forget the many hours of his time, he spent in discussion as well as his profound interest.

The author is deeply grateful to Dr. M.M.A. Abd El-Rahman Assoc. Prof ., physics Department, Faculty of Science, Aswan, South Valley University, for his supervision, continues discussion, and reading and correcting the manuscript.

My special thanks are due to Dr. Abd Alla El- Tawil Assoc. Prof, Nuclear Medicine Department, Faculty of Medicine, Cairo University, for his continues help. The present studies have been done in the framework of the mentioned projects.

I extend my sincere thanks to the Vice-Dean *Prof. A.I.Mohmoud* for help and assistance also my deep thanks to Dean of Faculty of Science& Prof. A. E. Belal Head of Physics Department, Faculty of Science, Aswan, South Valley University, for constant help, advice and encouragement. Special thanks are due to Staff Members of Aswan Cancer Institute for care and kind help.

Ali .G. Abd Alla .

CONTENTS

CONTENTS

Subjec	ct	Pag
ABST	TRACT	**
ACKN	IOWLEDGMENT	**
	CHAPTER 1	
(REACTORS PRODUCTION , RADIOCHEMICAL	
	AND RADIONUCLIDE PURITY)	
1-1	INTRODUCTION	
1-2	Mode of production of diagnostic radionuclide	
1-3	Reactors production	
1-4	Logistic of supply	
1-5	Radiochemical purity	
1-6	Radionuclide purity	
1-7	Chemical purity	
1-8	Biological purity	
1-9	Technetium radiochemistr radiochemical analysis	
1-10	Electrophoresis	
1-11	Gel filtration	
1-12	High-performance liquid chromatography (HPLC) -	
1-13	Solvent extraction	
1-14	Production of radionuclide	
1-14	1 Cyclotron –produced radionuclides	
	. 2 Reactor- produced radionuclides	
1-14	3 Fission (n, f) reaction	
1-14	4 Equation for production of radionuclides	-

Subject		
CHAPTER 2		
RADIOACTIVE DECAY		
2-1 Isomeric transition	29	
2-2 Alpha decay	31	
2-3 Beta decay	34	
2-4 Double beta decay	35	
2-5 Gamma decay	37	
2-6 Kinetics of radioactive decay	37	
2-6.1 Radioactive decay equations	. 37	
CHAPTER 3		
EXPERIMENTAL		
3-1 Sample collection	40	
3-1.1Working procedures	40	
3-2 Radionuclide generators	41	
3-2.1 Elutec technetium (Tc -99m) generator	41	
3-2.3 Method of use (Tc -99m) generator	43	
3-3 Calculation of the max. eluable activity of technetium-	44	
3-3.1 Calculation of the weight of technetium in the eluate	44	
3-4 Deluxe isotope calibrator	46	
3-4.1 Product description	46	

•