Endolaser Ablation Versus Embolization in Management of Lower Limb Varicose Veins

Essay

Submitted for Partial Fulfilment of Master Degree in Radiodiagnosis

Presented by

Engy Ibrahim Ali Ahmed (M.B., B.Ch.)

Supervised by

Prof. Dr. Randa Hussein Abdallah

Professor of Radiodiagnosis
Faculty of Medicine-Ain Shams University

Dr. Waleed Mohammed A. El Hamid Hetta

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

LIST OF CONTENTS

Title	Page
♦ Introduction	1
• Aim of the Work	4
• Review of the Literature:	
o Chapter 1: Anatomy of the lower extremity veins	5
o Chapter 2: Pathogenesis of varicose veins	25
o Chapter 3: Imaging findings of varicose veins	39
o Chapter 4: Technique of endolaser ablation & embolization	53
o Chapter 5: Endolaser ablation versus embolization with illustrative cases	69
Summary and Conclusion	88
♦ References	91
Arabic Summary	

LIST OF FIGURES

Fig. No	Title	Page
Figure (1):	Lower limb deep &superficial veins	7
Figure (2):	Lower limb deep venous system	8
Figure (3):	US of peroneal artery& veins, posterior tibialartery & veins	10
Figure (4):	Colour Doppler of popliteal artery & vein	12
Figure (5):	Colour Doppler of femoral artery & vein	13
Figure (6):	LSV & perforators	17
Figure (7):	Major lower limb perforators	20
Figure (8):	US of deep venous valve	23
Figure (9):	Competent & incompetent venous valve	26
Figure (10):	Pathophysiology of varicose veins	32
Figure (11):	Gross appearance of varicose veins	33
Figure (12):	Doppler US of incompetent SFJ	43
Figure (13):	Diagram & Doppler US of anatomical site of LSV	44
Figure (14):	Doppler US of SSV, popliteal artery& vein	46
Figure (15):	Doppler US of perforator vein	46
Figure (16):	3D CTV of LSV varicosities	49
Figure (17):	3D CTV of LSV dilatation& tortuous varicosities	50
Figure (18):	3D MRV of LSV side branch varico-sities	52

LIST OF FIGURES (CONT.)

Fig. No	Title	Page
Figure (19):	Doppler US of pre& intraoperative treatment of incompetent SFJ	54
Figure (20):	Technique of endovenous sclero- therapy	59
Figure (21):	YAG laser device	61
Figure (22):	Above knee puncture in EVLT	63
Figure (23):	Doppler US of laser fiber & tumescent in EVLT	66
Figure (24):	Laser fiber occluding the vein	66
Figure (25):	SSV varicosities	77
Figure (26):	Doppler US of SSV varicosity with reflux	78
Figure (27):	Post sclerotherapy treatment of SSV varicosity	79
Figure (28):	Pre sclerotherapy ankle spider veins	80
Figure (29):	Post sclerotherapy treatment of ankle spider veins	80
Figure (30):	Pre ELA medial aspect leg varicosities	81
Figure (31):	Doppler US of intraoperative laser tip during EVLT	82
Figure (32):	Doppler US follow up assess closure of LSV	82

LIST OF FIGURES (CONT.)

Fig. No	Title	Page
Figure (33):	Post EVLT of left leg medial aspect varicosities	83
Figure (34):	Left LSV varicosities	84
Figure (35):	Doppler US of LSV vaicosis&reflux pre EVLT	85
Figure (36):	Post EVLT Doppler showing closure of LSV	86
Figure (37):	Post EVLT of left leg	87

LIST OF ABBREVIATIONS

Abbrev.	Full Term
CVI	Chronic venous insuffecieny
DVT	Deep venous thrombosis
ELA	Endolaser ablation
EVLT	Endovenous laser therapy
GSV	Great saphenous vein
LSV	Long saphenous vein
MF	Muscular fasia
MDCT	Multi slice detector computed tomography
PA	Popliteal artery
PER A	Peroneal artery
PER V	Peroneal vein
PTA	Posterior tibial artery
PTV	Posterior tibial vein
PV	Popliteal vein
PV	Perforator vein
RFA	Radio frequency ablation
Saph c	Saphenous compartment
SF	Saphenous fascia
SFJ	Sapheno-femoral junction
SSV	Short sapehenous vein
UGFS	Ultra-sound guided foamed sclerotherapy
US	Ultra-sound
vcss	Venous clinical severity scores
3D	Three dimensioned

ACKNOWLEDGEMENT

First and foremost, praise and thanks be to the Almighty Allah, the source of all knowledgement

I would like to express my deepest thanks, gratitude and profound respect to my honored professor, **Prof. Dr. Randa Hussein**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her meticulous supervision. I consider myself fortunate to work under her supervision. Her constant encouragement and constructive guidance were of paramount importance for the initiation, progress and helped me to overcome many difficulties.

No words can describe the help of **Dr. Waleed Hetta**, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his great support and guidance which were cornerstone for this work.

Last but not least, I would like to express my endless gratitude to My family for their everlasting love, care and support, with special thanks to My Dad, Mum, My husband, My best friend Fatemah for their great help for completion of this work, no words can give them their right.

Engy Ibrahim Ali

Introduction

Chronic venous insufficiency of the lower limbs is a common condition affecting about 25% of women and 15% men with the venous reflux at the sapheno-femoral junction (SFJ) being the most common cause leading to varicose veins and represents a significant health care problem all over the world (*Kapoor et al.*, 2010).

Varicose veins are any dilated, elongated and tortuous vein irrespective of size. The term commonly refers to the veins on the leg, although varicose veins occur elsewhere. Veins have leaflet valves to prevent blood from flowing backwards (retrograde). Leg muscles pump the veins to return blood to the heart. When veins become enlarged, the leaflets of the valves no longer meet properly, and the valves don't work (*Golan et al.*, 2007).

Varicose veins and spider veins are simply a cosmetic concern. For other people, varicose veins can cause aching pain, swelling, skin irritation or sores (ulcers), discoloration, inflammation (phlebitis) and discomfort. Sometimes varicose veins lead to more serious problems and may also signal a higher risk of other circulatory problems (*Leopardi et al.*, 2009).

The traditional treatment of this condition is surgical ligation and division of the saphenous trunk and all proximal

tributaries are followed either by stripping of the vein or by avulsion phlebectomy. These procedures lead to a painful and prolonged post operative recovery with high incidence of hematoma formation, nerve injury and infection as well as high recurrence rate (*Golan et al.*, 2007).

Endovenous techniques clearly are less invasive and are associated with fewer complications compared with more invasive surgical procedures, with comparable or greater efficacy .Recent advances is directed towards minimally invasive endovenous techniques which has gained an increasing acceptance in clinical practice (*Nijsten et al.*, 2009).

Endovenous foam sclerotherapy is relatively not a recent technique which uses an injection of a special chemical (sclerosant) into a varicose vein to damage and scar the inside lining of the vein. The catheter and sclerosant are guided to the affected vein with the help of Doppler ultrasound. This process allows sclerotherapy treatment to be used on larger varicose veins that previously could only be treated surgically with ligation and stripping (*Sadick*, 2005).

EndovenousLaser ablation for varicose veins is an attractive alternative minimally invasive technique to treat such patients. The technique is used for elimination of saphenous vein reflux by means of destruction of venous tissues using laser to cauterize (burn) and close abnormally enlarged veins in the legs diverting blood flow immediately to nearby healthy veins. This shown a high success rate with low rates of complications (*Van den Bos et al.*, 2009).

Aim of the Work

The aim of this study is to evaluate the feasibility of management of varicose veins of lower limbs by endovenous laser ablation and foam sclerotherapy.

Anatomy of the Lower Extremity Veins

Developmental Anatomy:

By the fourth week of the intrauterine fetal life, a swelling of the lateral embryonic body wall forms the limb buds. They are richly vascularized, where the arteries are axial, while the veins are marginal. There are a couple of veins present on each side. The anterior marginal vein is the pre-axial and the posterior marginal vein is the post-axial, both drain separately into the posterior cardinal vein (*Williams et al.*, 1989)

In the adult life the pre-axial vein of the lower limb become the great or long saphenous vein, which more proximally gives rise to the proximal femoral and the external iliac veins. The post-axial vein become the lesser or the short saphenous vein, which more proximally gives rise to the popliteal, inferior gluteal and the internal iliac veins as a portion of the posterior cardinal vein (*Williams et al.*, 1989)

Gross Anatomy of the Veins of the Lower Limb:

The veins of the lower limb can be divided into superficial and deep group. The superficial veins are subcutaneous and lie in the superficial fascia, the deep veins (beneath the deep fascia) accompany the major arteries. Venous blood normally flows from distal to proximal and from superficial group to deep group through sapheno-femoral junction, sapheno-popliteal junction& perforator veins (**Fig.1**). The lower extremity veins rely on one-way valves located at intervals along the main veins. Both groups have valves, which are more numerous in the deep veins. Venous plexuses occur within and between some of the lower limb muscles (*Gray's*, 2005).

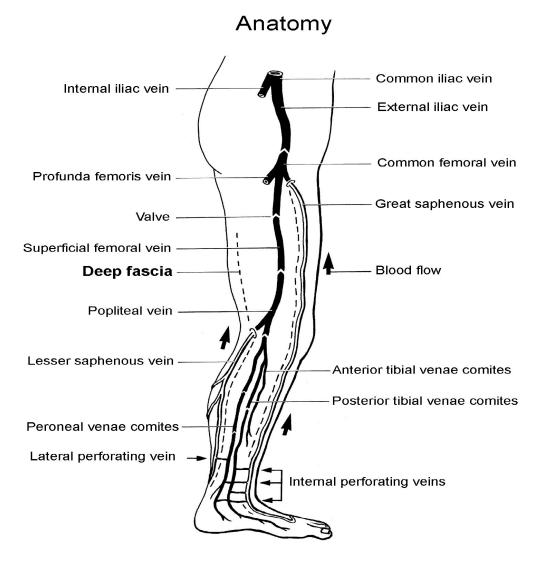
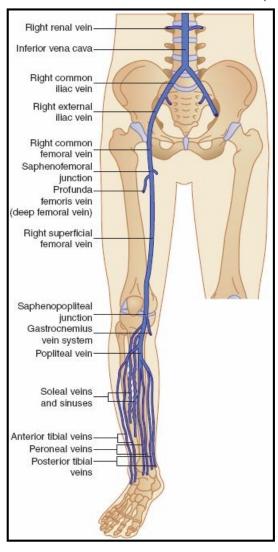



Figure (1): Deep and superficial veins of the lower limbs (Quoted from Allan et al., 2002).

Deep Veins of the Lower Limb (Fig.2)

From distal to proximal areSolealveins, Gastrocnemial veins, Posterior tibial veins, Peroneal veins, Anterior tibial veins, Popliteal vein, Femoral vein, External iliac vein, Internal iliac vein and Common iliac vein (*Allan et al.*, 2002).

Figure (2): The deep venous system of the lower limb (*Hartshorne*, 2005).