Study of the Prevalence of Chronic Obstructive Pulmonary Disease among Smokers

Thesis

Submitted For Partial Fulfillment of the Master Degree of Chest Diseases

By

Hala Ahmed Abd Allah

MBBCH Faculty of Medicine Ain Shams University

Supervised by

Prof. Dr.: Mona Mansour Ahmed

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Prof. Dr.: Emad korraa

Professor of Chest Diseases Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2011

دراسة معدل الإصابة بمرض السدة الرئوية المزمنة بين المدخنين

رسالة مقدمة من الطبيبة

هالة أحمد عبدالله

بكالريوس الطب والجراحة كلية الطب جامعة عين شمس توطئه للحصول على درجة الماجستير في الأمراض الصدرية

تحت إشراف أستاذ دكتور/منى منصورأحمد

أستاذ الأمراض الصدرية كلية الطب جامعة عين شمس

أستاذ دكتور/عماد قراعه

أستاذ الأمراض الصدرية كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١١

Summary

The present study was conducted in El-Mataria Teaching Hospital, chest department, by spirometric screening of 350 male volunteer smokers including quitters. Thirty eight (11%) of them were receiving treatment for COPD prior to the study, but the reminders (89%) were apparently healthy and not receiving treatment for COPD.

The aim of this study was to assess the prevalence of COPD among smokers aged 40 up to 65 with a history of at least 20 pack/year cigarette smoking, including quitters.

Exclusion criteria:

- **1.** Persons complaining of chronic pulmonary diseases other than COPD.
- **2.** Persons younger than 40 or older than 65 years.
- **3.** Persons with smoking history less than 20 pack/year.

All of them were subjected for:

- 1. **Personal history:** including detailed history about smoking habit (duration, number and type of smoking).
- 2. **Occupational history:** to exclude occupational causes of COPD.

3. **Family history:** of COPD or other chronic pulmonary diseases.

4. General examination: Including

- a. Vital data (pulse and blood pressure)
- b. Height and weight.
- c. Examination of upper and lower limbs.
- d. Examination of head and neck.

5. Local examination: including

- Local chest examination.
- Local examination of other systems.

6. Investigations: including

- Routine laboratory investigations including:
 - -Complete blood count.
 - -Fasting and 2hours postprandial blood glucose level.
 - -Renal and liver function test.
- Pulmonary function tests: were done using the computerized spirometer spirometrics 1986, model 2005; version 3.1, U.S.A.

All these data are collected and statistically analyzed:

- It was found that 79.1% of studied persons had no airway obstruction and 20.9% showed different degrees of airway obstruction.
- It was found that (42.5%) of cases that have airway obstruction as proved by spirometric study were receiving treatment for COPD prior to the study but the reminders (57.5%) were apparently healthy and not receiving treatment for COPD. So the spirometric screening of high risk population is a helpful method for early detection of COPD.
- There is a higher percentage of airway obstruction among old age group (>54 years) 25.3% compared to 16.7% in young age group (≤54 years) and the difference is significant statistically.
- 36% of subjects showed different degrees of small airways dysfunction.
- There is statistically significant negative (inverse) correlation between smoking index and pulmonary function parameters including FEV1% and FEF25-75%.
- There is statistically significant negative (inverse) correlation between age and FEV1%.

Conclusion

The present study may represent a potentially useful model to use the spirometry in high risk population as an effective and easy method for the assessment of the prevalence of COPD.

Recommendations

According to the results of the present study, it is recommended to:

- Perform Spirometric screening of smokers aged more than 40 years in pulmonary outpatient clinics nationwide.
- Raise the awareness of the public health authorities, the medical community and the general public to consider COPD as a public health issue.
- Encourage programs for routine office spirometry in general practice.
- Supply primary care units with hand-held spirometers, and to provide GPs with skills and training in this specific domain, in addition to increasing their ability to incorporate spirometry in their daily routines.
- Help smokers with airflow limitation to quit smoking and to be followed up in antismoking clinics.
- Do much more efforts in order to design strategies for the improvement and motivation of prevention policies, early detection, diagnosis, and management of COPD patients at all levels of health care, especially in the provision of primary health care, in order to reduce the economic impact of COPD.

Summary, conclusion and Recommendations		

List of tables

Review of literatures:

- **Table 1:** Risk factors of COPD.
- **Table 2:** Investigations for diagnosis and initial assessment of COPD.
- **Table 3:** Differential diagnosis of COPD.
- **Table 4:** Global initiative for Chronic Obstructive Lung Disease, 2008 Classification.
- **Table 5:** Selected toxic substances in the gas phase of cigarette smoke.
- **Table 6:** Selected toxic substances in the particulate phase of cigarette Smoke.
- **Table 7:** Diseases Associated with cigarette smoking.

Results:

- **Table 8:** Descriptive statistics of the mean age, weight, height, body mass index and smoking index (pack /year) among studied persons.
- **Table 9:** Descriptive statistics of pulmonary function parameters among studied persons.
- **Table 10:** Classification of studied persons by the presence of airway obstruction as proved by spirometric study.

- **Table 11:** Classification of COPD cases according to GOLD 2008.
- **Table 12:** Percentage of small airway dysfunction among studied persons.
- **Table 13:** Percentage of cases receiving treatment for COPD prior to the study.
- **Table 14:** Relation between smoking index (pack/year) and presence of airway obstruction.
- **Table 15:** Relation between smoking index (pack/year) and presence of small airway dysfunction.
- **Table 16:** Relation between smoking index (pack/year) and percentage of patients receiving treatment for COPD prior to the study.
- **Table 17:** Comparison between age groups as regard presence of airway obstruction.
- **Table 18:** Comparison between age groups as regard presence of small airway dysfunction.
- **Table 19:** Relation between smoking index (pack/year) and presence of symptoms of airway obstruction.
- **Table 20:** Relation between smoking index and presence of signs of airway obstruction.

- **Table 21:** Comparison between cases receiving treatment and cases not receiving treatment as regard presence of airway obstruction.
- **Table 22:** Correlation coefficient between smoking index (pack/year) and pulmonary function parameters among studied persons.
- **Table 23:** Correlation coefficient between age of the studied persons, smoking index (pack/year) and pulmonary function parameters.

Introduction

Chronic obstructive pulmonary disease is a major cause of chronic morbidity and mortality around the world. Many people suffer from this disease for years and die prematurely from it or its complications. COPD is the fourth leading cause of death in the world, and further increases in its prevalence and mortality in the coming decades can be predicted (*Lopez et al.*, 2006).

Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease state characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and is associated with an abnormal inflammatory response of the lungs to noxious particles or gases, primarily caused by cigarette smoking (American Thoracic Society, 2004).

The diagnosis of COPD should be considered in any person who has symptoms of cough, sputum production, dyspnea, or history of exposure to risk factors of the disease. The definitive diagnosis requires spirometry; namely, forced expiratory volume in the first second/forced vital capacity (FEV₁/FVC) < 0.7 that is not fully reversible (*American Thoracic Society and European respiratory Society, 2007*).

Tobacco smoking is the main risk factor for COPD, although other inhaled noxious particles and gases may contribute. This causes an inflammatory response in the lungs, which is exaggerated in some smokers, and leads to the characteristic pathological lesions of COPD. In addition to inflammation, an imbalance of proteinases and antiproteinases in the lungs, and oxidative stress are also important in the pathogenesis of COPD (American Thoracic Society, 2004).

The disease often manifests after the individual has been smoking more than 20 cigarettes a day over 20 years (20 pack/year) (Siafakas et al., 1995). A smoker who is sensitive to cigarette smoke may therefore have Spirometric changes from age 40 to 45 if they started smoking as a teenager or in the early twenties. It has been estimated that 15–20% of smokers develop COPD (Global Initiative for Chronic Obstructive Lung Disease, 2006), but more recent research suggests that as many as 50% develop COPD if the smoker reaches an advanced age (Teramoto, 2007).

Aim of the work

The aim of this work is to assess the prevalence of COPD among smokers aged 40 up to 65 with a history of at least 20 pack/year cigarette smoking, including quitters.

Contents

	Page
Introduction	1
Aim of the work	3
Review_of_literatures	
<u>COPD</u>	
• Definition	4
• Burden of COPD	7
• Risk factors	13
Pathogenesis	21
• Clinical assessment	32
• Investigations of COPD	37
• Differential diagnosis	53
• Staging of COPD	54
Smoking	
• Introduction	56
• The smoking epidemic	58