Diagnostic value of macrophage inflammatory protein-1 beta (MIP-1 β) in serum and ascitic fluid of patients with decompensated HCV related cirrhosis with and without spontaneous bacterial peritonitis

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By:

Sabreen Adly Mohamed

MB.B.Ch. Ain Shams University

Under Supervision of

Prof. Dr. Khaled Abd El Hamid Mohamed

Professor of Internal Medicine, Gastroenterology and Hepatology Faculty of Medicine, Ain Shams University

Assistant Prof. Dr. Sherif Sadek Taha

Assistant Professor of Internal Medicine, Gastroenterology and Hepatology Faculty of Medicine, Ain Shams University

Dr. Hosam Samir Elbaz

Lecturer of Internal Medicine, Gastroenterology and Hepatology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

First, I would like to thank Allah a lot for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr.**Khaled Abd El Hamid Mohamed, Professor of Internal Medicine,
Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams
University for his great support and advice, his valuable remarks that
gave me the confidence and encouragement to fulfill this work.

I am also thankful to Assistant Prof. Dr. Sherif Sadek Taha, Assistant Professor of Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University for his valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Dr. Hosam Samir Elbaz**, Lecturer of Internal Medicine Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, for his invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

Finally my deep thanks to my family for supporting me throughout my life.

Tist of Contents

Title Pag	e No.
List of Abbreviations	i
List of Tables	v
List of Figures	viii
Abstract	•••••
Introduction	1
Aim of the study	
Review of Literature:	
Chapter (1): Liver cirrhosis	8
Chapter (2): Spontaneous bacterial peritonitis	52
Chapter (3): Macrophage inflammatory protein 1beta	132
Patients and Methods	148
Results	167
Discussion	201
Summary	249
Conclusion	256
Recommendations	257
References	258
Arabic summary	

Tist of Abbreviations

Abb. Full Term

AASLD American Association for the study of Liver diseases

AF Ascitic fluid.

AFLAC Ascitic fluid lactoferrin.

AFP Alpha fetoprotein.

AIDS Acquired immune deficiency syndrome.

ALD Alcoholic liver disease.

ALF Acute liver failure.

ALP Alkaline phosphatase.

ALT Alanine aminotransferase.

APACHE Acute Physiology and Chronic Health Evaluation.

APC Antigen presenting cell.

AST Aspartate aminotransferase.

ATH Autoimmune hepatitis.

AUC Area under curve.

BP Bacterial peritonitis.

BSG British society of gastroenterology.

BUN Blood urea nitrogen.

C3 Complement 3.

CA Community acquired.

CCL C-C motif ligand.
CCR . Chemokine receptor.

CD Cluster of differentiation.

CEA Carcinoembryonic Antigen.

CEA Carcinoemoryonic Anug

CK Chemokines

CNNA Culture negative neutrocytic ascites.

CRP C-reactive protein.

CT Computed tomography.

CXR Chest X ray.

DIC Disseminated intravascular coagulopathy.

DNA Deoxyribonucleic Acid.

List Of Abbreviations

dsRNA Double-stranded RNA.

EASL European Association for the Study of the Liver.

ECM Extracellular matrix.

ELISA Enzyme linked immunosorbant assay.
ESBL Extended spectrum beta lactamase.

ESLD End-stage liver disease.

FN Fibronectin.

GALT Gut associated lymphoid tissue.

GABA Gaba-amino butaric acid.
GE Granulocyte esterase.

GGT Gama glutamyl transpeptidase.

GNB Gram negative bacteria.

GPB Gram positive bacteria.

GTPase Guanosine triphosphatase.

HBsAg Hepatitis B surface antigen.

HBV Hepatitis B virus. HCA Health care acquired.

HCC Hepatocellular carcinoma.

HCV Hepatitis C virus.

HE Hepatic encephalopathy.

HIV Human immune deficiency virus.

HRP Horseradish peroxidase.
HRS Hepatorenal syndrome.
HT4 Hydroxy tryptophan 4.

ICU Intense care unit. Ig Immunoglobulin.

IL Interleukin.

INR International normalized ratio,

LC Liver cirrhosis.

LDH Lactate dehydrogenase
LE Leukocyte esterase.
LFT Liver function tests.

List Of Abbreviations

LLQ Left lower quadrant.
LPS Lipopolysaccharide.
LT Liver transplantation.

MCP Macrophage chemoattractant protein.

MLNs Mesentric lymph nodes.

MELD Model for End-Stage Liver Disease.

MIP-lß Macrophage inflammatory protein 1 beta.

MMP Matrix metalloproteases.

MODS Multiple organ dysfunction score.

MOF Multiple organ failure.

MPI Mannhiem peritonitis index.

MPV Mean platelet volume.
MR Magnetic resonance.

MRI Magnetic resonance imaging.

mRNA Messenger RNA.

MRSA Methicilin resistant staph aureus.

MSCT Multi-Slice CT.

NAFLD Nonalcoholic fatty liver disease. NASH Non alcoholic steatohepatitis.

NGAL Neutrophil gelatinase associated lipocalin.

NK Natural killer cell.

NO Nitric oxide.

NOD Nucleotide oligomerisation domain.

NSBB Non selective beta blocker.

OD Optical density.

OR Odds ratio.

OS Overall survival.

PAMP -rn. Pathogen associated molecular pattern.

PBC Primary biliary cirrhosis.

PCT Procalcitonin.

PDW Platelet distribution width. PMN Polymorph nuclear cells.

List Of Abbreviations

PNL Polymorph nuclear leukocyte.

PPI Proton pump inhibitor.

PRR Pattern recognition receptor.
PSC Primary sclerosing cholangitis.

PT Prothrombin time.

PVT Portal vein thrombosis.

ROC Receiver operating characteristics.

RNA Ribonucleic acid.

RP-nano- Reverse phase nano-high performance liquid chromatography

HPLC- ES1- electro spray ionization tandem mass spectrometry.

MS/MS:

SAAG Serum ascitic albumin gradient.
SAPS Simplified acute physiology score.
SBP Spontaneous bacterial peritonitis.
SNPs Small nuclear polypeptides.

SOFA Sepsis related organ failure assessment.

TACE Trans Arterial Chemoembolization.

TGF\$1 Transforming growth factor beta 1.

Th T helper cell.

TLC Total leucocytic count.
 TLR Toll like receptor.
 1MB Tetramethylbenzidine.
 TNF Tumor necrosis factor.

UA Urine analysis.
UK United Kingdom.
US Ultrasonography.

USA United States of America.

VCAM Vascular cell adhesion molecule.

WBCs White blood cells.

WHO World health organization.

Tist of Tables

Table No.	Title Page No.
Table (1):	Child-Pugh Score46
Table (2):	SBP and other varieties of ascitic fluid infections 57
Table (3):	Clinical setting of SBP, related definitions and commentary
Table (4):	Differential diagnosis of ascites based on the serum ascitic albumin gradient (SAAG)
Table (5):	Descriptive analysis of the study population as regard the ages
Table (6):	Descriptive analysis of the study population as regard the sex
Table (7):	Descriptive analysis of the study population as regard smoking status
Table (8):	Comparison between both groups as regard age 170
Table (9):	Comparison between both groups as regard sex171
Table (10):	Comparison between both groups as regard smoking status
Table (11):	Comparison between both groups as regard modified Child-Pugh score
Table (12):	Comparison between both groups as regard MELD score. 174
Table (13):	Comparison between both groups as regard degree of ascites (clinical & PAUS)

List Of Tables

Table (14):	Comparison between both groups as regard splenomegaly
Table (15):	Comparison between both groups as regard long term use of PPI
Table (16):	Comparison between both groups as regard regular NSBB intake
Table (17):	Comparison between both groups as regard renal impairment
Table (18):	Relation between regular users of NSBB in both groups, their modified Child-Pugh score and who developed renal impairment in both groups
Table (19):	Comparison between both groups as regard different clinical presentations
Table (20):	Comparison between both groups as regard different Lab values:
Table (21):	Comparison between both groups as regard the different inflammatory markers in serum
Table (22):	Comparison between both groups as regard the different values in ascitic fluid:
Table (23):	Different clinical presentations of group A patients 189
Table (24):	Bacterial growth in ascitic fluid of group A patients 190
Table (25):	Incidence of bacteremia in patients with positive ascitic culture
Table (26):	Comparison between incidence different types of bacteria in culture positive patients in group A

List Of Tables

Table (27):	Comparison between antibiotic susceptibility of different types of bacteria in culture positive patients in group A 192
Table (28):	Correlation between ascitic PMN and all other parameters in SBP group
Table (29):	Comparison between both groups as regard the MIP-16 values in serum and ascitic fluid
Table (30):	Correlation between ascitic and serum MIP-1β and all other parameters in SBP group
Table (31):	Diagnostic performance of ascitic MIP-1β in discriminating groups A (SBP) from group B (liver cirrhosis)
Table (32):	Diagnostic performance of serum MIP-1β in discriminating groups A (SBP) from group B (liver cirrhosis)
Table (33):	Comparison between serum-ascites differences of MIP-15 in both groups

List of Figures

Figure M	o. Title J	Dage No.
Figure (1):	Histopathology of cirrhotic liver	10
Figure (2):	Gross picture of liver cirrhosis (Jonas et al., 20	01)26
Figure (3):	Spontaneous bacterial peritonitis (SBP mortality.	
Figure (4):	Key elements driving development of bacteria and risk of treatment failure.	
Figure (5):	Evidence-based algorithm for evaluation patients, diagnosis and management of SBP	
Figure (6):	Cells attraction towards concentration of chem	okines 134
Figure (7):	Three dimensional structure of chemokines	136
Figure (8):	Structure of different chemokine classes	138
Figure (9):	Three dimensional structure of Human Mi chemokine (C-C motif) ligand 4.	• •
Figure (10):	10 double dilution series of MIP-1β	159
Figure (11):	Human MIP-1 beta is measured using immunoassays	
Figure (12):	Standard curve of human Macrophage In Protein 1 Beta (MIP1b) ELISA Kit	
Figure (13):	Descriptive analysis of the study population a sex	· ·
Figure (14):	Comparison between both groups as regard age	e170

Figure (15):	Comparison between both groups as regard sex171
Figure (16):	Comparison between both groups as regard smoking status
Figure (17):	Comparison between both groups as regard modified Child-Pugh score
Figure (18):	Comparison between both groups as regard MELD score. 174
Figure (19):	Comparison between both groups as regard degree of ascites (clinical & PAUS)
Figure (20):	Comparison between both groups as regard splenomegaly (clinical & PAUS)
Figure (21):	Comparison between both groups as regard long term use of PPI
Figure (22):	Comparison between both groups as regard regular NSBB intake
Figure (23):	Comparison between both groups as regard renal impairment
Figure (24):	Comparison between both groups as regard different clinical presentations
Figure (25):	Comparison between different clinical presentations in group A
Figure (26):	Bacterial growth in ascitic fluid of group A patients 191
Figure (27):	Receiver operating curve (ROC) curve analysis of ascitic MIP-1β between patients in group A and B
Figure (28):	Receiver operating curve (ROC) curve analysis of ascitic MIP-1β between patients in group A and B

ABSTRACT

Background:

Spontaneous bacterial peritonitis (SBP) is a life-threatening infection and considered one of the most serious cirrhosis complications because of its frequency, morbidity and mortality rates (10:30%) and its unclear clinical picture; different laboratory diagnostics play a pivotal role for rapid and effective management of SBP patients.

Objective of the study:

The aim of the study is to assess and evaluate the potential diagnostic efficacy of macrophage inflammatory protein type 1 beta (MIP-1 β) in cirrhotic patients and its usefulness in the diagnosis of SBP.

Patients and methods:

60 Egyptian patients were evaluated into two groups; Group A: 30 patients with HCV related liver cirrhosis with ascites proved to have SBP (PNL≥250/mm³ in AF) and Group B: 30 patients with HCV related liver cirrhosis with ascites but without SBP (PNL<250/mm³ in AF and negative ascites fluids culture). Different inflammatory markers and MIP-1β in sera and AF in patients of both groups were measured.

Results:

MIP-1 β was significantly increased in AF in patients with SBP versus non SBP (P \leq 0.001).At the best cut off value 113 pg/ml, diagnostic performance of ascetic MIP-1 β in discriminating SBP; the sensitivity of the test was 77.33% while the specificity was 83.33%. While at the best cut off value 123 pg/ml, diagnostic performance of serum MIP-1 β in discriminating SBP from non SBP; the sensitivity of the test was 76.67% while the specificity was 80%.

Conclusion:

MIP-1 β is a useful marker in the diagnosis of SBP in cirrhotic patients with satisfactory sensitivity and specificity. Chemokines should be further explored for diagnostic use.

Keywords: Spontaneous bacterial peritonitis, Macrophage inflammatory protein type 1 beta, Ascitic fluids, Chemokines.

INTRODUCTION

Ascites remains the commonest of the three major complications of advanced or decompensated cirrhosis (along with hepatic encephalopathy and variceal hemorrhage) and according to a prognostic model proposed by D'Amico and co-workers, the occurrence of varices initiates the second stage of cirrhosis, the third stage is defined by the development of ascites and variceal hemorrhage initiates the fourth stage (*D'Amico G et al*, 2013).

The occurrence of bacterial infection, which delineates an additional fifth stage of cirrhosis, termed the "critically ill" patient with cirrhosis, as it increases mortality of patients with decompensated cirrhosis (*Arvaniti Vet al*, 2012).

Spontaneous Bacterial Peritonitis (SBP) is an ascitic fluid infection without a definitive, surgically treatable, intra-abdominal source such as perforation or inflammation of intra-abdominal organs, accounting for 10 to 30% of cirrhotic patients with ascites (*Wiest R et al*, 2012).