

Biological control of the fungus *Drechslera* in rice and genetic engineering for host resistance gene

Thesis

Submitted in partial fulfillment of the requirements for Master Degree in Microbiology (Microbiology)

BY Shimaa Ahmed Gouda

(B.Sc. Microbiology, 2012)

Supervisors

Dr. Khyreia Abd El-Ghany Youssef

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Naziha Mohamed Hassanein

Professor of Mycology and Plant pathology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Tahsin Mansour Shoala

Lecturer of Molecular Biology, Environmental Biotechnology Department, Faculty of Biotechnology, Misr University for Science and Technology.

Department of Microbiology Faculty of Science Ain Shams University (2017)

Approval sheet

Biological control of the fungus *Drechslera* in rice and genetic engineering for host resistance gene

BY

Shimaa Ahmed Gouda

B.Sc. Microbiology, Faculty of Science, Ain Shams University, 2012

Supervisors

Dr. Khyreia Abd El-Ghany Youssef

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Naziha Mohamed Hassanein

Professor of Mycology and Plant pathology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Tahsin Mansour Shoala

Lecturer of Molecular Biology, Environmental Biotechnology Department, Faculty of Biotechnology, Misr University for Science and Technology.

Examination committee

Dr. Lobna Abdel Aziz Moussa

Professor of Microbiology, Microbiology Department, Agricultural Research Center

Dr. Eman Mohamed Fawzy

Professor of Microbiology, BiologyDepartment, Faculty of Education, Ain Shams University

Dr. Khyreia Abd El-Ghany Youssef

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Dr. Naziha Mohamed Hassanein

Professor of Mycology and Plant pathology, Microbiology Department, Faculty of Science, Ain Shams University

Date of examination / /	1		Approval date	/	/
University council approve	d /	/			

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful. I can do nothing without Him

I would like to express my deep gratitude and thanks to my dear supervisor Dr. Naziha Mohamed Hassanein, Professor of Mycology and Plant pathology, Department of Microbiology, Ain shams university, for her help, encouragement, continuous advice and her expert supervision to bring this thesis to more than satisfactory finish. She always patient, perfect in work organization and the best advisor. Iam proud to be one of her students and I hope that she is satisfied with me.

A great thanks to Dr. Khairia Abd El-Ghany Youssef, professor of Microbiology, Department of Microbiology, Faculty of Science, Ain shams university for her supervision, support, encouragement, valuable advices and constant help.

A great thanks to Dr. Tahsin Mansour Shoala, Lecturer of Molecular Biology, Environmental Biotechnology Department, Faculty of Biotechnology, Misr University for Science and Technology for his supervision, support, encouragement, valuable advices and constant help.

Very special thanks to Dr. Salah felefel, head of fungicides research, plant pathology institute, Agriculture research center for his support, encouragement during my study.

A deep thank to Microbiology Department and all my Colleagues in microbiology department for their assistance, support and for providing a suitable environment during my work.

Dedication

This thesis is dedicated with love to my family:

Father, mother, my husband yasser and my sister for their tired for me, continuous support, encouragement from the start of study

List of Contents

	Page
Acknowledgement	C
List of Tables	
List of Figures	
List of Abbreviations	
Abstract	
Chapter I: Introduction	1
Chapter II: Review of literature	
1. Rice	7
1.1. Taxonomy of rice plant	7
1.2. Description of rice plant	8
1.3. Economic and medical importance of rice plant	9
1.4. Rice in Egypt	10
1.4.1. Varieties of Egyptian rice	11
1.4.2. Cultivation of Egyptian rice.	12
2. Major diseases of rice.	14
2.1. Major fungal diseases of rice	17
2.1.1. Rice blast disease	17
2.1.2. Brown leaf spot disease	18
2.2. Major bacterial diseases of rice	22
2.3. Major viral diseases of rice	23
3.Control (management) of rice diseases	24
3.1. Regulatory control	24
3.2.Cultural control.	26
3.2.1. Pre-planting cp control measures	26

3.2.1.1. Crop rotation	26
3.2.1.2. Deep plowing	27
3.2.1.3. Flooding	27
3.2.1.4. Fire and flaming.	27
3.2.1.5. Sanitation	28
3.2.2. Pre- and post-planting cp control measures	28
3.3. Chemical control.	29
3.3.1. Seed treatment	29
3.3.1.1. Seed disinfestations	29
3.3.1.2. Seed protection	30
3.3.2. Soil fumigation	30
3.3.3. Nematicide application	30
3.3.4. Fungicide and bactericide sprays	31
3.4. Biological control	32
3.4.1.Mechanisms of biological control	33
3.4.3.1. Direct antagonism	34
3.4.3.2. Indirect antagonism	37
4. Molecular studies on resistant genes of rice plants	39
4.1. Mechanism disease resistant genes on plant	39
4.1.1. Pathogenesis-related (PR) proteins	39
4.1.2. Antifungal proteins	41
4.2. Role of salicylic acid and hydrogen peroxide on gene	
expression	42
4.2.1. Salicylic acid (SA)	42
4.2.2. Hydrogen peroxide (H2O2)	42
4 3 ß -1 3- olucanase genes	44

4.4. Plant biotechnology and fungal disease management	47
4.5. Quantitative real-time PCR	48
Chapter III: Materials and Methods	
1. Sample collection.	50
1.1. Rice rhizosphere fungi	50
1.2. Diseased rice plant parts	50
2. Isolation and identification of rice rhizosphere fungi	50
2.1. Isolation of rice rhizosphere fungi	50
2.2. Identification of rice rhizosphere fungi	51
2.2.1. Identification of rice rhizosphere filamentous fungi	51
2.2.2. Identification of rice rhizosphere yeasts	51
3. Isolation and identification of rice pathogens	55
3.1. Isolation of rice pathogens	55
3.2. Identification of rice leaves and grains pathogens	56
4. <i>In vitro</i> antagonistic activity of rhizosphere fungi against rice plant	
pathogens	57
5. Green house study and pathogenicity test	58
5.1. Steralization of rice seeds	58
5.2. Preparation of seeds and pot treatments	58
5.3. Preparation of salicylic acid and hydrogen peroxide required for	
treatment	58
5.4. Preparation of pathogen and antagonist inoculum for	
cultivation	59
5.5. Treatment of plant with salicylic acid, hydrogen peroxide,	
pathogen and antagonist	59
5.6. Disease assessment, data collection and analysis	61

5.6.1. Disease incidence rating	61
5.6.2. Scoring of disease severity	61
5.6.3. Measurement cholophyll content	63
5.6.4. Isolation and identification of Drechslera spicifera from	
infested rice plants	63
6. Molecular studies	63
6.1.RNA extraction.	63
6.2. Determination of RNA yield and purity	64
6.3. Primer design.	64
6.4. Quantitative real time PCR (QRT-PCR)	65
6.5. QRT-PCR calculations.	69
7. Media used for isolation and identification of rice rhizoshere fungi	
and rice pathogens	70
7.1. Media for isolation rice rhizosphere fungi	70
7.2. Media for identification rice rhizoshere fungi	71
7.2.1. Media used for the genus Aspergillus	71
7.2.2. Media used for the genus <i>Pencillium</i>	71
7.2.3. Media used for dematiaceous hyphomycetes	72
7.2.4. Media used for hyphomycetes	72
7.2.5. Media used for the genus Fusarium	72
7.3. Media used for isolation and identification of rice disease	
pathogen	72
8. Statistical analysis	73
Chapter IV: Results	
1. Isolation and identification of rice rhizpsphere fungi	74
2. Isolation and identification of rice leaves and grains pathogens	84

3. <i>In vitro</i> antagonistic activity of the fungal isolates against brown	
leaf spot pathogens of rice	
4. Green house study and pathogenicity tests	
4.1. Effect of salicylic acid and hydrogen peroxide treatment on	
plant	
4.2. Pathogenicity of Drechslera spicifera with different treatment	İ
on brown spot of rice plant	
5. Molecular studies	
5.1. Relative expression of β-1,3-glucanase 1 (<i>Gns1</i>) in Shakha101	
rice cultivar treated with hydrogen peroxide (H ₂ O ₂), salicylic	;
acid (SA) in response to pathogenic fungus Drechslera spicifera	l
(D) and antagonistic Penicillium decumbens (P) after 48	,
hours	
5.2. Relative expression of β-1,3-glucanase 1 (<i>Gns1</i>) in Shakha101	
rice cultivar treated with hydrogen peroxide (H ₂ O ₂), salicylic	;
acid (SA) in response to pathogenic fungus Drechslera	l
spicifera (D) and antagonistic Penicillium decumbens (P) after	•
72 hours,	
5.3. Relative expression of β-1,3-glucanase 5 (<i>Gns5</i>) Shakha101 rice	,
cultivar treated with hydrogen peroxide (H ₂ O ₂), salicylic acid	l
(SA) in response to pathogenic fungus Drechslera spicifera	l
(D) and antagonistic Penicillium decumbens (P) after 48	,
hours	
5.4. Relative expression of β-1,3-glucanase 5 (<i>Gns5</i>) Shakha101 rice	
cultivar treated with hydrogen peroxide (H ₂ O ₂), salicylic acid	
(SA) in response to pathogenic fungus <i>Drechslera spicifera</i> (D)	

and antagonistic <i>Penicillium decumbens</i> (P) after 72 hours	134
Chapter V: Discussion	142
Chapter VI: Summary	160
Chapter VII: References	165
Arabic summary	

List of Tables

		Page
Table 1:	The different treatments of the green house study	60
Table 2:	Disease rating scale for brown spot disease of rice	62
Table 3:	β-1,3-glucanase designed primers plus the reference gene (<i>Act1</i>) for QRT-PCR	65
Table 4:	Program used for three primer genes	68
Table 5:	Count and frequency of mould fungi isolated from rhizosphere of rice plants cultivated in El-Dakahlia and El-Qaliubiya	76
Table 6:	Count and frequency of yeast fungi isolated from rhizosphere of rice plants cultivated in El-Dakahlia and El-Qaliubiya	77
Table 7:	Isolation frequency of fungal pathogens isolated from infected rice plants El-Dakahlia and El-Qaliubiya	87
Table 8:	In vitro antagonistic activity of the selected rhizosphere fungi against Drechslera spicifera	96
Table 9:	In vitro antagonistic activity of the selected rhizosphere fungi against Drechslera rostrata	98
Table 10:	In vitro antagonistic activity of the selected rhizosphere fungi against Alternaria betroselini	101
Table 11 :	In vitro antagonistic activity of the selected rhizosphere fungi against Alternaria cinerariae	103

List of Tables

Table 12:	In vitro high antagonistic activity of the selected rhizosphere fungi against Drechslera spicifera, Drechslera rostrata, Alternaria cinerariae and Alternaria betroselini	105
Table 13:	Effect of salicylic acid and hydrogen peroxide treatments on growth parameters of rice plant	107
Table 14:	Effect of salicylic acid treatment on percentages of disease incidence (DI), disease severity index (DSI) and chlorophyll content (SPAD value) of rice plant at 21 DAI.	113
Table 15:	Effect of hydrogen peroxide treatment on percentages of disease incidence (DI), disease severity index (DSI) and Chlorophyll content (SPAD value) of rice plant at 21 DAI	115
Table 16:	Effect of <i>Drechslera spicifer</i> a alone and <i>Drechslera spicifera</i> with <i>Penicillium decumbens</i> on percentages of disease incidence (DI), disease severity index (DSI) and chlorophyll content (SPAD value) of rice plant at 21 DAI	117
Table 17:	Illustrates fold change in expression of <i>Gns1</i> gene at 48h. and 72 h. in all treatment	127
Table 18:	Illustrates fold change in expression of <i>Gns5</i> gene at 48h. and 72 h. in all treatment	137

List of Figures

Fig. 1:	Percentages of different mold fungi isolated from rhizosphere of rice plants cultivated in El-Dakahlia and El- Qaliubiya.
Fig. 2:	Percentages of different yeast fungi isolated from rhizosphere of rice plants cultivated in El-Dakahlia and El-Qaliubiya.
Fig. 3:	Photomicrograph of some Aspergillus spp. isolated from rhizosphere of rice plants where: (a) Aspergillus aculaetus; (b) Aspergillus fumigatus feresenius; (c) Aspergillus candidus and (d) Aspergillus flavipes
Fig. 4:	Photomicrograph of some isolates of dematecious fungi isolated from rhizosphere of rice plants where: (a) <i>Cladosporium cladosporiodes</i> ; (b) <i>Cladosporium</i> state of <i>venturia</i> and (c) <i>Monodictys castaneae</i>
Fig. 5:	Photomicrograph of some <i>Penicillium</i> spp. isolated from rhizosphere of rice plants where: (a) <i>Penicillium decumbens</i> ; (b) <i>Penicillium dimorphosporum</i> and (c) <i>Penicillium verrucuola</i>
Fig. 6:	Photomicrograph of some <i>Fusarim</i> spp. isolated from rhizosphere of rice plants where: (a) <i>Fusarium fusarioides</i> ; (b) <i>Fusarium lateritium</i> and (c) <i>Fusarium poae</i>
Fig. 7:	Percentages of different pathogens isolated from infected rice plant leaves and grains of El-Dakahlia governorate.

List of Figures

Fig. 8:	Percentages of different pathogens isolated from infected rice plant leaves and grains of El-Qaliubiya governorate	89
Fig. 9:	Photomicrographs of <i>Alternaria betroselini</i> isolated from naturally infected rice plants	90
Fig. 10:	Photomicrographs of <i>Alternaria cinerariae</i> isolated from naturally infected rice plants	91
Fig. 11:	Photomicrographs of <i>Drechslera rostrata</i> isolated from naturally infected rice plants	92
Fig. 12:	Photomicrographs of <i>Drechslera spicifera</i> isolated from naturally infected rice plants	93
Fig. 13:	In vitro antagonistic activity of the selected rhizosphere fungi against <i>Drechslera spicifera</i> where: (a) <i>Penicillium decumbens</i> ; (b) <i>P. dimorphosporum</i> ; (c) <i>Cladosporium</i> state of <i>venturia</i> ; (d) <i>Cl. cladosporiodes</i> and (e) Control.	97
Fig. 14:	In vitro antagonistic activity of the selected rhizosphere fungi against Drechslera rostrata where: (a) Aspergillus terrus; (b) A. parasiticus;(c) A. aculaetus; (d) Penicillium dimorphosporum; (e) P. digitatum; (f) Cladosporium cladosporiodes; (g); Gliomastix cerealis (h) A. flavipes; (i) Monodictys castaneae; (j) Rhodotorula mucilaginosa; (k) A. candids and (l) Control.	99
Fig. 15:	In vitro antagonistic activity of the selected rhizosphere fungi against Alternaria betroselini where: (a) Cladosporium state of venturia; (b) Penicillium decumbens; (c) Gliomastix cerealis; (d) Phaeodactylium alpiniae: (e) Cl. Cladosporiodes and (f) Control	102

Fig. 16:	In vitro antagonistic activity of the selected rhizosphere fungi against Alternaria cinerariae where: (a) Penicillium digitatum; (b) P. decumbens; (c) Cladosporium state of venturia; (d) P. dimorphosporum and (e) Control.
Fig. 17:	Effect of salicylic acid and hydrogen peroxide treatments on some growth parameters of rice plant.
Fig. 18:	Effect of treatment of rice plant with salicylic acid, hydrogen peroxide and water on some growth parameters where: (a) salicylic acid; (b)hydrogen peroxide and (c) water treatments(control)
Fig. 19:	Effect of salicylic acid (SA) on percentages of disease incidence (DI), disease severity index (DSI) and chlorophyll content (SPAD value) on rice brown spot disease when treated with <i>Drechslera spicifera</i> alone and with <i>Drechslera spicifera</i> and <i>Penicillium decumbens</i> .
Fig. 20:	Effect of hydrogen peroxide (H ₂ O ₂) on percentages of disease incidence (DI), disease severity index (DSI) and chlorophyll content (SPAD value) on rice brown spot disease when treated with <i>Drechslera spicifera</i> alone and with <i>Drechslera spicifera</i> and <i>Penicillium decumbens</i> .
Fig. 21:	Effect of treatment with <i>Drechslera spicifera</i> alone and with <i>Drechslera spicifera</i> and <i>Penicillium decumbens</i> on percentages of disease incidence (DI), disease severity index (DSI) and chlorophyll content (SPAD value) on rice brown spot disease.
Fig. 22:	Effect of salicylic acid spraying and hydrogen peroxide on DI%, DSI% and chlrophyll content (SPAD value) on rice brown spot disease in comparison with water sprayed plant.