

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPT.

CONTROL OF ACTIVE AND REACTIVE POWER FOR GRID GONNECTED PV INVERTER

A Thesis

Submitted in partial fulfillment for the requirement of the Degree of Master of Science in Electrical Engineering

By

Mostafa Mohamed Mahmoud Hasaneen

B.Sc. Electrical Engineering, Ain Shams University, 2010

Supervised By

Prof. Dr. Mohamed Abd-El-Latif Badr

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Prof. Dr. Ahmed Mohamed Atallah

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

> CAIRO-EGYPT 2016

Examiners Committee

Name, title and affiliation

Signature

Prof. Dr. Hosam Kamal youssef

Electrical Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Almoataz Youssef Abdelaziz

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Prof.Dr. Mohamed Abdel-latif Badr

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Prof.Dr. Ahmed Mohamed Atallah

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Supervisors Committee

Name, title and affiliation

Signature

Prof.Dr. Mohamed Abdel-latif Badr

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Prof.Dr. Ahmed Mohamed Atallah

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Keywords:

Renewable Energy, Photovoltaic, Distributed Generator, Maximum Power Point Tracking, Grid Connected inverters, Phase Locked Loop, Low Voltage Ride Through.

Abstract

PV grid-connected systems become one of the most important and promising applications for solar energy. The interfacing of solar PV systems to the grid requires efficient control strategies for operation, control and Power Quality (PQ) improvement. In order to facilitate increasing the penetration levels of PV systems into the grid, Egypt has approved the Feed in Tariff systems (FIT), which aims to generate 2300 MW of PV system, also with the advancement of the technology and reduction in the cost of the power electronic devices, PV prices are rapidly decreasing. Due to these incentives, grid connected PV solar systems are growing rapidly and many new investments in this field are published, recently the Egyptian Ministry of Electricity and Renewable Energy have added 40 KW PV system connected to the grid over its building which will be the core of this thesis.

For grid-connected PV applications, two different topologies have been mostly studied worldwide, known as one-stage and two-stage PV systems. This thesis presents a comparative study with the basic characteristics for two types of topologies of a grid-tie PV system to show the overall system performance aspects including energy conversion efficiency, power quality, and maximum power point tracking "MPPT" accuracy.

In addition, the thesis presents the maximum real and reactive power control algorithm for 40 kW three-phase single-stage PV system using a fast approximation interpolation algorithm of MPPT. For synchronization with the grid, the phase locked loop technique (PLL) is used, which controls the system using dq0 transformation by converting the three-phase voltages into the d-q axes. This technique utilizes the filtered grid voltages and gives an improved results.

The operational objectives of PV system are fulfilled by many control schemes, MPPT control mode, a certain amount of real power control mode and the switching between them. During sunlight, the system sends active power to the grid and at the same time compensates some of the load reactive power. In case of lower isolation level, the inverter compensates some of the load reactive power. The advantage of this strategy is to get use of the inverter total capacity all day long.

According to the grid code requirements to remain photovoltaic inverters connected to the grid to ride-through the faults and support the grid voltages, the control of a single-stage grid-connected photovoltaic power plant must fulfill the low-voltage ride through (LVRT) requirements. The control of the inverter has to incorporate reactive power support in the case of voltage sags. For this purpose, some modifications need to be applied to make the inverter ride-through compatible with any type of faults according to the grid codes.

These modifications include developing a control strategy using a droop control algorithm is activated to address the LVRT capability in order to remain the output currents and voltages sinusoidal. Selected simulation results are reported using error techniques (error, absolute error, performance index error) to validate the effectiveness of the proposed control algorithm. The control algorithm suggested making the photovoltaic system generates the maximum power available from the solar source and, at the same time, capable of contributing with the voltage regulation of the grid.

ACKNOWLEDGEMENT

I have the great honor to express my deepest gratitude and sincere thanks to **Prof. Dr. Mohamed Abd-El-Latif Badr** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for his kind supervision, guidance and continuous encouragement and for his helpful and fruitful discussions in the preparation of this thesis.

I wish to express my deepest gratitude and sincere appreciation to **Prof. Dr. Ahmed Mohamed Atallah** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for every good help and guidance during carrying this thesis.

Finally, but most importantly, I would like to thank **my beloved family** who always give me strong inspirations, moral supports, and helpful suggestions. Without them, my study career would never have begun.

Mostafa Hasaneen

CONTENTS

	Page	
ABSTRACT		
ACKNOWLEDGEMENT		
CONTENTS		
LIST OF FIGURES	ix	
LIST OF TABLES X		
NOMENCLATURE	xiii	
CHAPTER 1: INTRODUCTION		
1.1. PV History	1	
1.2. PV APPLICATIONS	3	
1.3. TRENDS OF PV MARKET DEVELOPMENT	4	
1.4. PV DEPLOYMENT IN EGYPT	7	
1.5. THESIS OUTLINES	8	
CHAPTER 2: PV MAIN COMPONENTS		
2.1. PV SYSTEM		
2.1.1 ON GRID PV SYSTEMS	10	
2.1.2. OFF-GRID PV SYSTEMS	11	
2.2. PV MODULES		
2.2.1. Solar Cell Equivalent Circuit	12	
2.2.2. PV Main Factors and Parameters	15	
2.2.3.Temperature and irradiance effects	17	
2.3. PV INVERTERS	18	
2.4. DC LINK CAPACTIORS	20	
CHAPTER 3: COMPARISON BETWEEN SINGLE	STAGE	
AND DOUBLE STAGE TOPOLGIES		
3.1.INTRODUCTION	22	

3.2. DIFFERENT STAGES TOPOLGIES	
3.2.1. Two stage topology	23
3.2.2. One stage topology	24
3.3. MPPT ALGORTHIM	25
3.4.MODELING	27
3.5. RESULTS & ANALYSIS	29
CHAPTER 4: CONTROL OF 40 kW PV SYSTEM	[
4.1. INTRODUCTION	33
4.2.DESCRIPTION OF THE PROPOSED SYSTEM	
4.2.1. PV Modules	34
4.2.2. Control loop	35
4.3. IMPLEMENTATION OF CONTROL SCHEMES	
4.3.1.Grid Synchronization	36
4.3.2. MPPT Algorithm	37
4.3.3.Controller of DC-Link Voltage	38
4.3.4. Inverter Control	38
4.3.5. Real and Reactive Power Control	40
4.4. MODELING	41
4.5. RESULTS & ANALYSIS	45
4.5.1. Constant Real and Reactive Power Control	
4.5.2. MPPT and Reactive Power Control	
4.5.3.Substitution between Fixed Real Power Control and MPPT	
CHAPTER 5: LOW VOLTAGE RIDE THROUGH	
CAPABILITY OF PROPOSED PV SYS	TEM
DURING VARIOUS TYPES OF GRID FAULTS	
5.1. GRID CODE REQUIRMENTS	55
5.2. LVRT CAPABILITY AMONG DIFFERENT	56

COUNTRIES. 5.3.CASE STUDY 61 5.3.1. PV system effectiveness under fault conditions 65 5.3.2. Impacts on the inverter connection under three phase fault 67 5.3.3. Droop control **CHAPTER 6: CONCLUSIONS & RECOMMENDATIONS** 6.1.Conclusions 72 6.2.Recommendations 74 **REFERENCES** 75 **APPENDICES** 81 **PUBLISHED WORK** 88

LIST OF FIGURES

Fig. No.	Title	Page
1-1	Evolution of PV markets.	5
1-2	Solar PV capacity in Germany (2000-2015)	6
2-1	Grid-Connected PV system	10
2-2	Stand-alone PV system	11
2-3	Equivalent circuit of solar cell	14
2-4	The MPP at I-V an P-V characteristics	16
2-5	The different I-V an P-V characteristics at constant Irr and deferent T.	17
2-6	The different I-V and P-V characteristics at constant T and deferent Irr.	18
2-7	Three phase VSI topology.	19
3-1	Fig. (3-1). Schematic diagram of PV system	22
3-2	Double Stage inverter	23
3-3	Single Stage inverter	24
3-4	Power controller of the direct current	25
3-5	Flow chart of MPPT algorithm.	26
3-6	Simulation model for single stage topology	28
3-7	Simulation model for double stage topology	28
3-8	Tracking d axis current for single stage topology	30
3-9	Tracking q axis current for single stage topology	30
3-10	Output power for single stage topology	30
3-11	Tracking d axis current for double stage topology	30
3-12	Tracking q axis current for double stage topology	31
3-13	Output power for double stage topology	31
3-14	FFT analyses of (a) PPC phase voltage and (b) PCC line voltage.	32
4-1	Over all system	31

4-2	PV I-V and P-V C/C's for array of SPR-305 panels	32
4-3	Block diagram of hysteresis band current control technique.	33
4-4	Phase locked loop (PLL) reference angle	34
4-5	phase locked loop (PLL) reference currents	35
4-6	Active power controller	36
4-7	ABH Block	37
4-8	PLL, dq0/abc and ABH blocks	37
4-9	Reactive power controller	38
4-10	Model for MPPT and reactive power control using PIDs	39
4-11	Switching between id1 & id2	41
4-12	Overview of the simulation model	42
4-13	Active and Reactive power injected to grid.	44
4-14	PV DC output voltage	44
4-15	3-phase voltage & current at PCC	45
4-16	voltage and current for phase A at PCC	45
4-17	actual & reference real power	46
4-18	actual & reference reactive power	46
4-19	Solar irradiance	47
4-20	Real power & Reactive power compensation	47
4-21	Output for PV DC voltage	49
4-22	3-phase voltage at PCC	49
4-23	3-phase current at PCC	49
4-24	Volt and current for phase A at PCC at lagging PF	49
4-25	Tracking system for reactive power	50
4-26	Tracking system for real power	50
4-27	Real power due to two fixed irradiance conditions.	51
4-28	MPPT power due to different irradiance conditions.	51
4-29	Final output power	52
4-30	Tracking system for Real output power	52
5-1	LVRT in China (a) 2011 edition, (b) 2012 edition.	55

5-2	LVRT Grid code- Germany	56
5-3	LVRT in (a)UK,(b)USA,(c) Spain and (d) Italy	58
5-4	Schematic diagram of single stage grid connected PV system	60
5-5	Shifting of PV operating point under a voltage sag condition.	60
5-6	DC link voltage under three phase fault	61
5-7	PI controller with an anti-wind-up technique	62
5-8	DC link voltage under three phase fault using anti wind up technique	62
5-9	The maximum dc-link voltage has to be higher that the PV voltage in open circuit (Voc).	63
5-10	Grid voltage and currents at PCC under three phase fault	64
5-11	Active & reactive power during three-phase fault without reactive power support	65
5-12	Droop controller	66
5-13	Sum of squared error versus value of Ki	67
5-14	Active and Reactive power with Droop controller – using Anti wind up technique	68
5-15	Error index three phase fault: (a) error, (b) square of error and (c) performance index	68

LIST OF TABLES

Table No.	Title	Page
1.1	Renewable energy indicators 2014	5
1.2	Total installed PV system prices – Global average.	6
1.3	Feed in tariff systems for solar energy in Egypt.	8
3.1	Simulation parameters for power control of PV system.	25
3.2	Performance comparison between single and double stage topologies for grid connected inverters.	30
4.1	PV array specifications	32
4.2	Controller parameters for KP and KI values.	39
5.1	Voltage ranges at PCC and their maximum trip times in Egypt code	58
5.2	System main C/c's.	59
5.3	Droop controller parameters.	67

NOMENCLATURE:

AC	Alternating current
ABH	Adaptive Band Hysteresis
DC	Direct current
G	Solar radiation
Gref	Nominal solar radiation
Id_1	Main current of the first diode
Id_2	Main current of the second diode
id ref	The reference current of real power
Ipv	Output current of PV cells
Iph	The photo current of PV cell.
Is_1	Saturation current of the first diode
Is_2	Saturation current of the second diode
Ish	Shunt current
Isc	Short circuit current
K	Boltzmann constant
m_1	Ideality factor of the first diode
m_2	Ideality factor of the second diode
MPPT	Maximum Power Point Tracking
PCC	Point of common coupling
PV	Photovoltaic
Ppv	Output power of PV cells
PI	Proportional integral
PLL	Phase locked loop
Q	The electron charge
Rs	Series resistance
Rsh	Shunt resistance
T	Temperature of PV cell.
THD	Total Harmonic Distortion
Vdc ref	Reference DC voltage determined by MPPT scheme
Vpv	Output voltage of PV cells
VSC	Voltage source converter
VSI	Voltage source inverter
VT	Thermal voltage