Preoperative Optimization of High Risk Surgical Patients

Essay

Submitted for Partial Fullfillment of the Master Degree in Anesthesiology

By

Fouad Farouk Mohammed Gadouh

M.B., B.Ch

Supervised By

Prof. Dr. Amr Mohamed El Said

Professor of Anesthesia, Intensive Care Medicine and Pain Management

Faculty of Medicine –Ain Shams University

Dr. Fady Adib Abd El Malek

Lecturer of Anesthesia, Intensive Care Medicine and Pain Management

Faculty of Medicine – Ain Shams University

Dr. Ghada Mohamed Samir

Lecturer of Anesthesia, Intensive Care Medicine and Pain Management

Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2014

سورة البقرة الآية: ٣٢

Acknowledgements

First of all, all gratitude is due to **ALLAH**, the almighty guided and aided me in bringing this work to light which would have never been crowned by success without blessing of ALLAH, to whom my faithful loyalty will remain however beyond my compromises.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Amr Mohammed ElSaid**, Professor of Anesthesiology, Intensive Care Medicine & Pain Management, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

It's a pleasure to express my deepest appreciation, gratitude and sincere thanks to my supervisor **Dr. FadyAdibAbd El Malek**, Lecturerof Anesthesiology, Intensive Care and pain management, Faculty of Medicine, Ain Shams University for his constructive suggestions, excellent guidance and eminent supervision which aided me over difficulties I met with throughout this work.

I would like to express my profound gratitude to **Dr. Ghada**Mohammed samir Lecturer of Anesthesiology, Intensive Care and pain management, Faculty of Medicine, Ain Shams University, for her guidance, continuous encouragement and valuable help.

foadfaroukMohamed

Contents

Subject	Page
List of tables	I
List of abbreviations	Ш
Introduction	1
Aim of the work	3
Definition of high risk surgical patients	4
Preoperative assessment of high risk surgical patient	10
Preoperative optimization of high risk surgical patients	49
Summary	114
References	117

List of Tables

No	Table			
1	Risk factors for perioperative morbidity and	10		
	mortality	10		
2	ASA physical status classifications			
3	Goldman Cardiac Risk Index			
4	Detsky's Cardiac Risk Index	19		
5	The Canadian Cardiovascular	20		
3	Society (CCS) grading of angina pectoris	20		
6	Revised (Lee's) Cardiac Risk Index 21			
7	Clinical predictors of increased prioperative	22		
/	cardiovascular risk	22		
8	Postoperative Pneumonia Risk Index	24		
0	Distribution of postoperative pneumonia risk	26		
9	index scores	26		
10	Risk factor Odds ratio for developing a	28		
10	respiratory complication	20		
11	Typical Preoperative Diagnostic Testing in	32		
11	Patients with Chronic Kidney Disease	32		
12	Risk Factors in Patients with Cirrhosis Who	33		
12	Undergo Surgery	33		
13	Risk Factors for Operative Mortality in Patients	34		
13	With Obstructive Jaundice	54		
14	Childs Classification for chronic hepatic	35		
14	patients	33		
15	Calculation of stroke risk index (SRI)	40		
16	Glasgow coma scale	40		
17	Modified pediatric GCS	41		
18	The "Hunt and Hess" and "Hunt and Kosnik"	42		

	Scales		
19	World Federation of Neurological Surgeons		
	Clinical Grading Scale	43	
20	The Fisher Scale for Grading SAH on	44	
20	Admission CT scan	44	
21	METs for different activities	50	
22	The Duke activity index	50	
22	New York Heart Association (NYHA)	51	
23	classification	31	
24	Management approach to patients with previous	61	
24	PCI who are due to undergo noncardiac surgery		
25	Contraindications to Elective Surgery in	80	
	atients with Liver Disease		
26	Preoperative management of neurological and 96		
	psychiatric medications	90	

List of Abbreviations

ACC/AHA	American College of Cardiologists and the		
	American Heart Association		
ACE	Angiotensin Converting Enzyme		
AKI	Acute Kidney Injury		
ALS	amyotrophic lateral sclerosis		
APO-E	PO-E apolipoprotein E		
ARB	Angiotsnsin Receptorblocker		
ASA	American Society of Anesthesiologists		
BUN	Blood urea nitrogen		
CABG	coronary artery bypass graft		
CaCB	Calcium channel blockers		
CAD	coronary artery disease		
CCS	The Canadian Cardiovascular Society		
CHF	congestive heart failure		
COPD	chronic obstructive airway disease		
COX	cyclooxygenase enzyme		
CPX	cardiopulmonary exercise testing		
CRI	Cardiac Risk Index		
DVT	Deep Venous Thrombosis		
ECG	Electrocardiogram		
FEV1	forced expiratory volume in 1 sec		
FVC	forced-vital capacity		
GCOS	Glasgow coma outcome scale		

GCS	Glasgow coma scale		
HMG	(3-hydroxy-3-methylglutaryl-coenzyme A		
CoA			
LAD	Left Anterior Doscending artery		
LV	left ventricle		
LVEF	Left Ventricular Ejection Fraction		
MELD	Model for End-Stage Liver Disease		
MEP	maximal inspiratory and expiratorypressures		
MET	metabolic equivalents		
NGT	Nasogastrictube		
NSAIDs	non steroidal anti-inflammatory drugs		
NYHA	New York Heart Association		
OSA	obstructive sleep apnea		
PACU	postanesthetic care unit		
PCF	peak cough flo		
PCI	Percutaneous coronary intervention		
PFT	Pulmonary function test		
PMNL	polymorphonuclear leukocyte		
PORIF	perioperative renal insuffesiency		
POSSUM	Physiological and Operative Score for the enumeration of morbidity and mortality		
PPC	I. perioperative pulmonary complications		
PVCs	premature ventricular contractions		
SAH	sub arachnoid he		
SIADH	inappropriate antidiuretic hormone secretion		
TIA	transient ischemic attacks		
TIA	transient ischemic attacks		
TIPS	Transjugular intrahepatic portosystemic shunt		
WFNS	World Federation of Neurological Surgeons		

Introduction

The pre-assessment, pre-admission or preoperative assessment clinic is the vehicle by which the early components of the enhanced recovery process are delivered and it allows for risk assessment and adjustment (**John et al.**, **2012**).

requires liaison between primary Pre-assessment secondary care such that patient evaluation can identify medical and social factors that he modified can preoperatively, not only to reduce the effects of surgery upon the patient, but also ensure an efficient enhanced recovery process (Kheterpal et al., 2009).

Detecting and modifying co-morbidities before an operation are central to the early stage of enhanced recovery and allow for a reduction in morbidity and in the need for more complex supportive care, such as intensive care. Preoperative assessment allows realistic evaluation of the risk of surgical intervention and gives an opportunity to manage the risk to an individual patient by making modifications to improve the patient's general condition and organ function (**Kheterpal et al., 2009**).

Guidelines and Expert Consensus Documents aim to present management and recommendations based on the relevant evidence on a particular subject in order to help physicians to select the best possible management strategies for the individual patient suffering from a specific condition, taking into account not only the impact on outcome, but also the risk—benefit ratio of particular diagnostic or therapeutic interventions (Halaszynski et al., 2004).

Studies that have investigated optimization of surgical patients have varied in their approaches to both the timing of interventions, and the goals they have aimed to achieve. For enhanced recovery to be successful it is essential that patients be adequately prepared for surgery and preoperative preparation is the first stage in this process. It sets the expectations of the patient and their family for planned surgery and emphasizes how this can affect the patient (Kehlet, 2009).

	Ai	m of the w	vork	
preop	in recent knowl erative medical ts to improve pe lity.	conditions in	the high risl	k surgical

Definition of high risk surgical patients

Risk

The dictionary meaning of "RISK" is hazard, danger, exposure to mischance or peril. Risk is a measure of probability (statistical chance) of future occurrence (usually undesirable). Nobody is with 'no risk' as a very small but possible chance of untoward outcome exists even for those who do not show presence of a factor known to be associated with undesired outcome. We can grade risk as:

- 1: Very low risk
- 2: Low risk
- 3: Moderate risk
- 4: High risk
- 5: Very high risk

(Chabra et al., 2002)

Risk factors

A risk factor is a detectable characteristic or circumstance of individuals or groups which is associated with an increased chance (risk) of experiencing an unwanted outcome. Risk factors can be 'causes' or 'signals' of untoward outcome. They are observable or identifiable before the occurrence of the undesirable event they predict. General risk factors for perioperative morbidity and mortality are shown in (table 1) (Chabra et al., 2002).

Table 1: Risk factors for perioperative morbidity and mortality:

- 1: Cardiac index > 12 as regard to goldman CRI
- 2: Previous severe cardiac illness (e.g., acute myocardial infarction, heart failure, stroke)
- 3: Age > 70 years with limited physiological reserve in one or more vital organs (NYHA classification II, III or IV)
- 4: sepsis/shock
- 5: Acute renal failure defined as an abrupt decrease of clearance of nitrogenous waste by the kidneys resulting from a variety of processes.

This is accompanied by acute rise > 30 % of serum creatinine within 24 h

6: Hepatic failure

(Massie et al., 1993)

Definition of high risk surgical patient

The high-risk surgical patient is defined as a patient, undergoing surgery, who is at a high risk for morbidity and mortality due to the coexistent diseases and/or the severity of surgery. A large population of high-risk surgical patients exists, accounting for approximately 13% of all surgical admissions but more than 80% of postoperative deaths (Gribes et al., 2000).

Classification of high risk surgical patients:

Several classifications have been described to stratify the risk of surgery.

- 1: In 1977, Goldman and his colleagues described the Cardiac Risk Index (CRI) based on his analysis of 1001 patients. Patients were given points according to the findings before surgery. However, this classification like the others mainly focused on the cardiac morbidity.
- 2: Another score, the POSSUM score (Physiological and Operative Score for the enumeration of morbidity and mortality), has been developed, originally for surgical audit, but it can also be used to estimate the risk of patients. Two-part scoring system including:

A: Physiological assessment

Provides exponential score on 12 variables:

- Age
- Cardiac signs
- Respiratory signs
- Systolic blood pressure
- Pulse
- Coma score
- Serum urea
- Serum sodium
- Serum potassium
- Hemoglobin
- White cell count
- ECG

B: Operative severity

Provides exponential score on 6 variables:

- Operative magnitude
- Number of operations within 30 days
- Blood loss
- Peritoneal contamination
- Presence of malignancy
- Timing of operation

(Mark et al., 2007)

3: The ASA (American Society of Anesthesiologists) classification of physical status was originally introduced in 1941 as a tool for statistical analysis. A high ASA score (table 2) is predictive of both increased postoperative complications and mortality after non-cardiac surgery (Mark et al., 2007).

Table 2: ASA physical status classifications:

Class	Original		
1	No organic pathology or patients in whom the pathological		
	process is localized and does not cause any systemic		
	disturbance or abnormality.		
2	A moderate but definite systemic disturbance caused either		
	by the condition that is to be treated or surgical		
	intervention or which is caused by other existing		