Intramuscular 17Alpha-hydroxyprogestrone, Progesterone suppositories and Dydrogesterone tablets in preventing Preterm labor: Randomized Control Trial

Thesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics & Gynecology

By

Ghada El-Sayed Mohammed

M.B.B.Ch (Cairo University, Dec, 2009) Resident of Obstetrics & Gynecology At Almonira Public Hospital

Supervisors

Prof. Ahmed Abdel Kader

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Kareem Mohamed Labib

Lecturer in Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Mohammed Mahmoud Samy

Lecturer in Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain-Shams University, Cairo, 2017

Acknowledgement

First, I feel always indebted to **Allah**, the Most Kind and the Most Merciful.

I would like also to express my deep appreciation and gratitude to **Prof.** Afmed Abdel Kader, Professor of Obstetrics & Gynecology, Faculty of Medicine – Ain Shams University, for his unlimited help, great efforts and time he has devoted to accomplish this work. I really have the honor to complete this work under his supervision.

I am deeply grateful to **Dr. Kareem Mohamed Tabib**, Lecturer in Obstetrics & Gynecology, Faculty of Medicine – Ain Shams University, for his unlimited help and giving me the privilege to work under his supervision. His care and support are really valuable and precious.

I would like also to express my deep appreciation and gratitude to **Dr. Mohammed Mahmoud Samy**, Lecturer in Obstetrics & Gynecology, Faculty of Medicine – Ain Shams University, for his care and support, also for the efforts and time he has devoted to accomplish this work.

Last but not least no words can express my genuine gratitude, deep appreciation and great love to my wonderful supportive **Mother**, and the soul of my **Tather**, my caring **Husband** for his cooperation that gave me the opportunity to work in a convenient way; also to my beautiful **Daughters** whose smiles helped me a lot passing hard times. I can never forget what they have done to me and I always owe to them a lot as long as I live.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Study	5
Review of Literature	
Preterm Labor	6
Pharmacokinetics of progesterone	36
Doppler Ultrasound	47
Patients and Methods	60
Results	74
Discussion	87
Summary	100
Conclusion	104
Recommendations	105
References	106
Arabic Summary	

List of Abbreviations

Abbr. Full-term **ACOG** : American College of Obstetricians and Gynecologists **ACTH** : Adrenocorticotropic hormone **AEDV** : Absence of end-diastolic flow velocity. **AF** : Amniotic fluid index. **AFP** : Alpha fetoprotein : Agency for Healthcare Research and Quality **AHRO AIUM** : American institute of ultrasound medicine ANCS : Antenatal corticosteroids **ANOVA** : Analysis of variance **AUC** : Area under curve **AVF** : Abnormal vaginal flora **CAPs** : Contraction-associated proteins **CDC** : Center For Disease Control Cmax : Maximum plasma concentration **CRH** : Corticotrophin releasing hormone **DHEA-S** : Dehydroepiandrosteron sulfate **DHEA-S** : Dehydro-epiandrosterone sulfate **EDD** : Expected day of delivery. **ELBW** : Extremely low bith weight **FDA** : Food and drug administration **FMs** : Fetal movements. GA : Gestational age GABA : γ-aminobutyric acid **GIT** : Gastrointestinal tract GW : Gestational weeks **HCG** : human chorionic gonadotropin **HPA** : Hypothalamic pituitary adrenal axis **IL6** : Interlukein 6

: Intra uterine growth restriction.

: Interlukein 8

: Intramuscular

11.8

 \mathbf{IM}

IUGR

IVH : Intra-ventricular hemorrhage

LBW : Low birth weight
LMP : Last menstrual period.
M.C.A. : Middle cerebral artery.
MMP8 : Matrix metalloproteinase-8

NICE : National institute for health and care excellence

NICU : Neonatal intensive care unite NIH : National institutes of health

P.I. : Pulsatility index.PGE2 : Prostaglandin E2PGs : Prostaglandins

PMR : Perinatal mortality rate.

PPROM: Preterm Premature rapture of the membrane

PR : Progesterone receptor

PTB : Preterm birth
PTL : Preterm labor
PW : Pulse wave

R.I. : Resistance index.

RDS : Respiratory distress syndrome

REDV : Reversal of end-diastolic flow velocity.

SD : Standard deviation

SGA : Small for gestational age.
Tmax : Maximum time for absorbtion

U.A : Umbilical artery.VLBW : very low birth weightWHO : World health organization

ZEB : Zinc finger E-box binding homeobox protein

170HPC : 17 hydroxy progesterone caproate.

List of Tables

Eable No	v. Eitle	Page No.
Table (1):	Risk of recurrent preterm birth in pregnancy	
Table (2):	Types of progesterone	40
Table (3):	Age of patients in the three study gro	oups 74
Table (4):	Obstetric history in the three study g	roups 74
Table (5):	Prevalence of risk factors for PTL three study groups	
Table (6):	Main outcome measures in the three groups	•
Table (7):	Neonatal outcomes in the three groups	•
Table (8):	The birth weight in the three groups:	80
Table (9):	Incidence of adverse neonatal outcomes the three study groups	
Table (10):	UA Doppler indices before and treatment in the three study groups	
Table (11):	MCA Doppler indices before and treatment in the three study groups	
Table (12):	Multivariable binary logistic reg analysis for the relation between the of progesterone administration and adjusted for possible confounding fa-	e route PTL as

List of Figures

Figure No	v. Eitle Page V	lo.
Figure (1):	Pathways leading to preterm birth	.11
Figure (2):	Steroid hormone synthesis. The precursor cholesterol from the maternal circulation is converted to 21 carbon (C21) progestagens	. 38
Figure (3):	Normal impedance to flow the umbilical arteries and normal pattern of pulsatility at the umbilical vein in 1° trimester	. 51
Figure (4):	Normal impedance to flow the umbilical arteries and umbilical vein in early 2°trimester	. 51
Figure (5):	Normal Pregnancy - Development of the umbilical artery	. 52
Figure (6):	Pulsatility index in the umbilical artery with gestation (mean, 95th and 5th centiles	. 54
Figure (7):	Transverse view of the fetal head with color Doppler showing the circle of Willis	. 56
Figure (8): 1	Normal flow of the Middle Cerebral Artery in 1st trimester	. 56
Figure (9): 1	Normal flow of the Middle Cerebral Artery in 2nd and 3rd	. 56
Figure (10):	Pulsatility index of the fetal middle cerebral artery with gestation	. 57
Figure (11):	Prontogest	65
Figure (12):	Cidolut-Depot	67
Figure (13):	Duphaston	69
Figure (14):	Prevalence of risk factors for PTL in the three study groups	. 76

Figure (15):	Main outcome measures in the three study groups.	77
Figure (16):	Mean gestational age at delivery in the three study groups	79
Figure (17):	Mean Apgar score in the three study groups	79
Figure (18):	Mean birth weight in the three study groups	81
Figure (19):	Incidence of adverse neonatal outcomes in the three study groups	82
Figure (20):	Mean UA RI before and after treatment in the three study groups	83
Figure (21):	Mean UA PI before and after treatment in the three study groups	83
Figure (22):	Mean MCA RI before and after treatment in the three study groups	85
Figure (23):	Mean MCA PI before and after treatment in the three study groups	85

Abstract

Background: Preterm birth is the major cause of neonatal mortality and morbidity. A history of a prior spontaneous PTB remains the greatest risk factor for spontaneous PTB, These high-risk women have been the focus of recent trials for the prevention of recurrent prematurity. Aim of the Work: This study aims to compare between the efficacy of intramuscular 17alpha-hydroxyprogestrone, progesterone vaginal suppositories and dydrogesterone oral tablets in prevention of preterm labor in high risk women. Patients and Methods: Study Setting: Ain Shams University Maternity Hospital. Study Duration: From January 2016 to August 2016. Number of patients: A total of 120 pregnant women at risk of preterm labor were recruited in the study. Type of the study: Randomized control trial. **Results:** The present study found that there was a statistically significant difference between the 3 groups regarding gestational age at delivery. It was significantly higher in vaginal &IM group when compared to oral group, However there was no statistical difference between the vaginal & IM groups in mean gestational age. **Conclusion:** In the current study we concluded that The only independent predictor of preterm labor was short cervical length p value (.01), neither the route of administration of any type of progesterone, nor the presence of history of preterm labor was independently related to occurrence of preterm labor (p values more than 0.05. **Recommendations:** The prevalence of preterm delivery is still high worldwide and more research with bigger sample size is required.

Key words: preterm birth, recurrent prematurity, dydrogesterone

Introduction

reterm birth is a common problem in obstetric care, with estimates ranging from 5% in several European countries to 18% in some African countries (*Blencowe et al., 2012*). Preterm labor defined as delivery before 37 completed weeks is the leading cause of perinatal and neonatal morbidity and mortality and strongly related to the developmental and neurological disabilities later in life (*Blencowe et al., 2013*).

Mortality and morbidity are inversely related to gestational age at delivery, and the most severe consequences occur when delivery occurs, before 34 weeks of gestation (*Klein et al., 2011*). Preterm birth prevention is considered a major challenge for obstetricians. Progesterone is an important hormone for the maintenance of pregnancy early as well as later in gestation.

In singleton pregnancies, prophylactic progesterone treatment during the second and third trimesters has been shown to reduce the rate of preterm delivery in those with a history of previous spontaneous preterm delivery (Rode et al., 2009), specially in those with short cervix diagnosed during mid trimesteric transvaginal ultrasound scanning (Da Fonseca et al., 2007) but in some other risk factors such as multiple gestations it was found to have no impact on either PTL or perinatal morbidity (Rouse et al., 2007).

Progesterone is essential for the initiation and maintenance of pregnancy. After the discovery of the progesterone receptor (PR) in 1970, it was realized that a progesterone receptor antagonist (PA) would have a major impact on female reproductive health (*Chwalisz et al., 2002*).

Progesterone (abbreviated as P4), also known as pregn-4-ene-3, 20-dione (*Norman Adleret al., 2015*). is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens (*Tekoa et al., 2010*) and is the major progestogen in the body.

Progesterone is sometimes called the "hormone of pregnancy (*Bowen*, 2008) and it has many roles relating to the development of the fetus:

Progesterone converts the endometrium to its secretory stage to prepare the uterus for implantation. At the same time progesterone affects the vaginal epithelium and cervical mucus, making it thick and impenetrable to sperm. Progesterone is anti-mitogenic in endometrial epithelial cells, and as such, mitigates the tropic effects of estrogen (*Patel et al.*, 2014).

 During implantation and gestation, progesterone appears to decrease the maternal immune response to allow for the acceptance of the pregnancy.

- Progesterone decreases contractility of the uterine smooth muscle (Bowen, 2008).
- A drop in progesterone levels is possibly one step that facilitates the onset of labor.
- There is still considerable uncertainty regarding the optimal progesterone type, route of administration, dosage and timing of start of therapy to prevent PTL in risky women (*Tita Rouse*, 2009).

The vasodilator effect of progesterone on uterine circulation in the non pregnant female (*Deichert et al.*, 1996) and during the first trimester of pregnancy is well known (*Czajkowski et al.*, 2007). But little information is available on its effect on uterine and fetal circulation later in gestation.

In one study performed by Barda et al., it showed that vaginal micronized progesterone used for the prevention of PTL was associated with a significant reduction in the fetal middle cerebral artery (MCA) pulsatility index (PI) but with no effect on uterine circulation (*Brada et al.*, 2010).

Study Hypothesis

In pregnant women at risk for preterm labor, intramuscular 17 alpha hydroxyprogestrone, progesterone vaginal suppositories and oral dydrogesterone; may prevent preterm labor with an equal efficacy.

Question

In women at risk for preterm labor, Do intramuscular 17 alpha-hydroxyprogestrone, progesterone vaginal suppositories and oral dydrogesterone; prevent preterm labor with an equal efficacy?

Aim of the Study

This study aims to compare between the efficacy of intramuscular 17alpha-hydroxyprogestrone, progesterone vaginal suppositories and dydrogesterone oral tablets in prevention of preterm labor in high risk women.