Diagnosis and Management of Metabolic Syndrome

Essay

Submitted for Partial Fulfillment of Master degree in **Intensive Care Medicine**

By

Youssef Nabil Melssen (M.B. B. Ch.)

Supervised by

Prof. Dr. Mohsen M. Mahmoud Kotb

Professor of Anaesthesia and Intensive Case Faculty of Medicine - Ain Shams University

Prof. Dr. Mohsen Abdelghani Basiony

Professor of Anaesthesia and Intensive Case Faculty of Medicine - Ain Shams University

Dr. Mahmod Hassan Mohamed

Lecturer of Anaesthesia and Intensive Case Ain Shams University - Faculty of Medicine

> Ain Shams University Faculty of Medicine 2011

تشخيص وعلاج متلازمة الأيض

رسالة توطئة للحصول على درجة الماجستير في الرعاية المركزة

مقدمة من الطبيب/ يوسف نبيل ملسن بكالوريوس الطب والجراحة

تحت اشراف

الأستاذ الدكتور/ محسن محمد محمود قطب

أستاذ التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

الأستاذ الدكتور / محسن عبد الغنى بسيونى

أستاذ التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

الدكتور / محمود حسن محمد

مدرس التخدير والرعاية المركزة كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١1

Summary

The metabolic syndrome consists of a constellation of factors that raise the risk for CVD and type 2diabetes. Because of the increasing prevalence of obesity, the metabolic syndrome has increased in frequency. ATP III introduced the metabolic syndrome into its clinical guidelines in the effort to achieve CVD risk reduction beyond LDL lowering therapy. Other clinical guidelines likewise have emphasized the need for more clinical attention to the metabolic syndrome. Although not all obese, sedentary persons acquire the metabolic syndrome, a significant subgroup of the population is susceptible to worsening of important contributors to the metabolic syndrome in the presence of energy imbalance. Several factors appear to contribute this susceptibility, especially to genetic predisposition and aging. Certain ethnic groups are particularly susceptible to the syndrome. Insulin resistance is a common feature of many of the components of the metabolic syndrome, and some investigators believe that it plays a key pathogenic role. Although genetic susceptibility is essential, the metabolic syndrome is relatively uncommon in the absence of obesity and physical inactivity. For this reason, lifestyle modification leading to weight reduction and increased physical activity represents first-line clinical therapy of the metabolic syndrome. Smoking cessation, of course, is paramount. A realistic goal for overweight/ obese persons is to reduce body weight by 7% to 10% over a period of 6 to 12 months. Weight reduction should be combined with a daily minimum of 30 minutes of moderate

List of Contents

Title Page	;
♦ Introduction 1	
♦ Aim of the Work	
♦ Chapter 1:	
Metabolic Syndrome Introduction 4	
♦ Chapter 2:	
• Definitions of Metabolic Syndrome 8	
♦ Chapter 3:	
• Pathophysiology of Metabolic Syndrome 12	
♦ Chapter 4:	
• Management of the Metabolic Syndrome 32	
♦ Summary	
♦ References	
♦ Arabic Summary	

List of Tables

Tab. No	Title	Page
Table (1):	Presents the diagnostic features of each definition	9
Table (2):	AHA/NHLBI criteria for diagnosis of metabolic syndrome	10
Table (3):	Metabolic syndrome: proposed components and associated findings	13
Table (4):	Current Clinical Practice: Type 2 Diabetes, Pre-Diabetes, and the Metabolic Syndrome	14
Table (5):	Classification of overweight and obesity risk for diabetes, cardiovascular disease, hypertension	15
Table (6):	Candidate genes associated with metabolic syndrome	23
Table (7):	Therapeutic goals and clinical recommendations for management of the metabolic syndrome	
Table (8):	Suggested Lifestyle Changes Counseling on Prediabetes and Metabolic Syndrome	39
Table (9):	Weight loss treatment guidelines	40
Table (10):	FDA-approved medications for weight management	41
Table (11):	Indications and contraindications for	44

Table (12):	Criteria for bariatric surgery in	
	adolescents44	ŀ

List of Tables (Cont.)

Tab. No	Title	Page
Table (13):	Complications from laparoscopic adjustable gastric band	47
Table (14):	Complications of gastric restriction operations	47
Table (15):	Physical activity prescription for aerobic and muscle strengthening exercises	50
Table (16):	Criteria for performing stress testing and examples of activity intensity	52
Table (17):	Recommendations for using the FITT principle	53
Table (18):	LDL-cholesterol goals and thresholds	58

List of Figures

Fig. No	Title	Page
Figure (1):	Schematic of components of the MS	4
Figure (2):	Pathophysiology of the metabolic syndrome	18
Figure (3):	Growth in number of bariatric operations performed each year	
Figure (4):	Illustrations of operative procedures	43
Figure (5):	Vertical sleeve gastrectomy	44

List of Abbreviations

Abbrev.

AHA/NHLBI	American Heart Association/National
	Heart Lung and blood institute
ASCVD	Atherosclerotic cardiovascular disease
BMI	Body mass index
CAMs	Cell adhesion molecules
CAPN10	Calpain-10
CD36	Cluster of Differentiation 36
CRP	C-reactive protein
CVD	Coronary vascular disease
DECODE	Diabetes Epidemiology Collaboration Analysis of Diagnosis Criteria European
DZ	Dizygotic
EGIR	European Group for the Study of Insulir Resistance
HDL	High density lipoprotein
HDL-c	High density lipoprotein cholesterol
HOMA	Homeostatic model assessment
HOMA-IR	Homeostatic model assessment-insulin resistance
IDF	International federation of diabetes
IFG	Impaired fasting glucose
IGT	Impaired glucose tolerance
IL-1	Interleukin-1
IL-6	Interleukin-6
IR	Insulin resistance
IRS	Insulin receptor substrate

List of Abbreviations (Cont.)

IRS1	Insulin receptor substrate 1
IRS2	Insulin receptor substrate 2
LAR	Leptin: adeponectin ratio
LDL	Low density lipoprotein
LDL-p	Low density lipoprotein particle
Lp-pLA ₂	Lipoprotein-associated phospholipase-A2
Lyso-pe	Lysophotidylcholine
mRNA	Messenger RNA
MS	Metabolic syndrome
MZ	Monozygotic
NAFLD	Non alcoholic fatty liver disease
NCEP-ATPIII	National cholesterol education programme. Adult treatment panel III
OGTT	Oral glucose tolerance test
OX-NEFA	Oxidized none-stratified fatty acid
PAI-1	Plasminogen activator inhibitor-1
PPAR -γ	Peroxisome proliferators activated
SNP	receptor-γ Single-nucleotide polymorphism
	Type 2 diabetes mellitus
TNF -α	Tumor necrotic factor- α
us	United States
WHO	World Health Organization
β 3 AR	β3-adrenergic receptor
11 β- HSD1	11β-hydroxysteroid dehydrogenase type
	Chromosome 3 short arm, hand 25

Introduction

The prevalence of metabolic syndrome (MS) has increased significantly over the past decade among both adults and adolescents. Older age, postmenopausal state, higher body mass index (especially, visceral fat), high carbohydrate intake, and physical inactivity are associated with an increased risk of developing the metabolic syndrome with concomitant increase in diabetes and coronary heart diseases (*Kolovo et al.*, 2007).

The metabolic syndrome, a concurrence of abdominal fat, disturbed glucose and insulin metabolism, dyslipidemia, and hypertension has been strongly associated not only with subsequent development of type 2 diabetes but also with atherothrombosis. The pathophysiology of this association is complex. The metabolic syndrome affects the thrombogenicity of circulating blood. Apart from its effect on platelets, a procoagulant and hypofibrinolytic state has been identified; mainly the result of the inflammatory state, dyslipidemia, and liver fat accumulation that accompany the metabolic syndrome (*Alessi et al.*, 2008).

Insulin resistance and ectopic fat accumulation are fundamental to diagnose metabolic syndrome and associated clinical conditions. Clinical examination and simple biochemistry tests are sufficient to diagnose this syndrome in the majority of patients. The measurement of insulin sensitivity is desirable, but impractical for routine use (*Olufadi and Byrne*, 2008).

Current and potential therapies for metabolic syndrome target obesity, insulin resistance, dyslipidemia, hypertension, inflammation, pro-thrombotic state, and the environmental conditions that promote obesity. Given the diverse pathological mechanisms leading to the syndrome, a broad approach targeting multiple etiologic factors is reasonable (*Phillippa*, 2005).

Bariatric surgery for the treatment of adolescent obesity is an extremely invasive procedure and it can only be indicated in extremely restricted circumstances in this age group. The American Paediatric Surgical Association Clinical Task Force on Bariatric Surgery recommends that adolescents may be candidates for the procedure if they have a body mass index greater than 50, or greater than 40 and associated with co-morbidities (sleep apnea, diabetes mellitus) (*Lottenberg*, 2007).

Aim of the Work

- To review new concepts of the metabolic syndrome.
- To highlight the emerging therapeutic options for the metabolic syndrome and how this may alter the prospect of cardiovascular patients.

Metabolic Syndrome

Introduction

The metabolic syndrome is a clustering of factors that increasing CVD risk including hyperinsulinemia, obesity, dyslipidemia (small dense low-density lipoprotein, hypertriglyceridemia, and decreased high-density lipoprotein cholesterol), and hypertension. The pathogenesis of the syndrome has multiple origins. However, obesity and sedentary lifestyle coupled with diet and still largely unknown genetic factors clearly interact to produce the syndrome (Figure 1) (Steinberger et al., 2009).

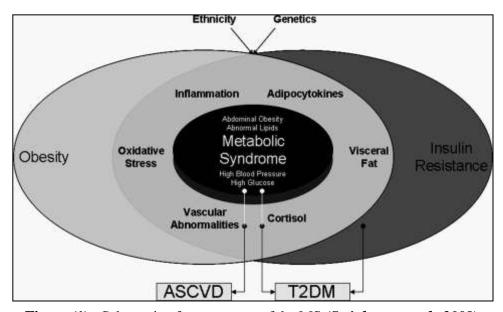


Figure (1): Schematic of components of the MS (Steinberger et al., 2009).

There is currently substantial confusion between the conceptual definition of the metabolic syndrome and the clinical screening parameters and cut-off values proposed by various organizations (NCEP-ATP III, IDF, WHO, etc) to identify individuals with the metabolic syndrome (Després et al., 2008).

In 1988, Reaven noted that dyslipidemia, hypertension, and hyperglycemia commonly cluster together and called this clustering Syndrome X, which was recognized as a multiplex risk factor for CVD. The metabolic syndrome has been associated with various names since being originally described by *Reaven* (1988).

These names include:

- 1. Diabesity
- 2. Syndrome X
- 3. Deadly quartet
- 4. Deadly pentad disease
- 5. Dysmetabolic syndrome
- 6. Polymetabolic syndrome
- 7. Coronary risk syndrome
- 8. Insulin resistance syndrome
- 9. Atherothrombogenic syndrome