Detection of Galactomannan Antigen in Diagnosis of Invasive Aspergillosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Ghada Mohammed Mostfa Ellkany

M.B., B.Ch. Faculty of Medicine. Alexandria University

Supervised By

Professor / Manal Abd El-Alim Abd El-Sattar

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor / Omnia Abou El-Makarem Shaker

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Hala Badr El-Din Ali

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

Acknowledgment

First and foremost, praise and thanks be to the Almighty (ALLAH) for his limitless help and guidance and peace be upon his prophet.

It is a great honor to express my deepest gratitude and appreciation to **Prof. Manal Abd El-Alim Abd El-Sattar** Professor of Clinical and Chemical Pathology, Ain Shams University for her sincere guidance, kind supervision and great help.

I wish also to express my great appreciation to **Professor**/Omnia Abou El-Makarem Shaker Professor of Clinical and Chemical Pathology, Ain Shams University for her valuable advice and suggestions.

My sincere gratitude and thanks to **Doctor/ Hala Badr El-Din Ali,** Assistant Professor of Clinical and Chemical Pathology, Ain Shams University, for giving me the privilege of working under her supervision and for her constant help and encouragement.

I am also greatful to **Professor /Moustafa El Houssinni** Professor of Community medicine, Ain Shams University, for his valuable help and great cooperation.

A special word of thanks to my husband for giving me much of his time, effort and support.

Ghada Mohammed Ellkany

List of Contents

Page	No.
1 05	+ 1 U :

•	List of Abbreviation	I
•	List of Tables	III
•	List of Figures	V
•	Introduction	1
•	Aim of the work	4
•	Aspergillus Species	5
	- Taxonomy and classification	5
	- Structure	9
	- Reproductive mode and sexuality	14
	- Nutrition	15
	- Clinical significance	15
	- Virulence factors	17
•	Aspergillus and the immune system	24
	- Host defence against Aspergillus	24
	- Evasion of the immune response	32
•	Invasive aspergillosis	37
	- Risk factors	37

	- Pathogenesis	38
	- Pathology	42
	- Clinical manifestation	44
•	Diagnosis of invasive aspergillosis	45
	- Baseline criteria	46
	- Radiology	49
	- Histopathlogy	52
	- Culture	53
	- Non-culture based methods	54
•	Management of invasive aspergillosis	66
•	Subjects and Methods	69
•	Results	85
•	Discussion	99
•	Summary	104
•	Conclusion	106
•	Recommendation	107
•	References	108
•	Arabic Summary	

List of Abbreviations

AFD	Aspergillus fumigatus diffusible product
AIDS	Acquired immunodeficiency syndrome
AMs	Alveolar macrophages
BAL	Bronchoalveolar lavage
BG	1,3-β-D- glucan
BHIA	Brain heart infusion agar
CNS	Central nervous system
CSF	Cerebrospinal fluid
CZA	Czapeck agar
DC-SIGN	Dendritic cell-specific ICAM-3-grabbing
	nonintegrin
ELISA	Enzyme-linked immunosorbent assay
EORTC/MSG	European Organization of the Research and
	Treatment of Cancer/Mycoses Study Group
FDA	Food and Drug Administration
FI	Fungal infection
Galf	Galactofuranose
GM	Galactomannan
GMS	Gomori's methenamine silver
GVHD	Graft-versus-host disease
HSCT	Hematopoietic stem cell transplantation
IA	Invasive aspergillosis
IDO	Indoleamine 2,3-dioxygenase

IL	Interleukin
LRTI	Lower respiratory tract infection
MEA	Malt extract agar
NETs	Neutrophil extracellular traps
OD	Optical density
PA ELISA	Platelia Aspergillus ELISA
PAMP	Pathogen associated molecular patterns
PAS	Periodic acid schiff
PMNLs	Polymorphonuclear leukocytes
PRR	Pathogen-recognition receptors
RIAs	Radioimmunoassays
ROI	Reactive oxygen intermediates
SDA	Sabouraud dextrose agar
SP-A	Surfactant protein A
SP-D	Surfactant protein D
Th1	T helper 1
Th2	T helper 2
TLR	Toll like receptors
TNF α	Tumor necrosis factor α

List of Tables

Table	Subject	Page
(1)	Sexual genera and their representative Aspergillus species	6
(2)	The subgeneric classification of Aspergillus	8
(3)	Characteristic features of medically important Aspergillus species	11
(4)	European Organization of the Research and Treatment of Cancer/Mycoses Study Group criteria for diagnosis of invasive aspergillosis	46
(5)	Type of diagnostic criteria for invasive aspergillosis	47
(6)	Causes of false positive Aspergillus galactomannan antigenemia	57
(7)	Patients and underlying diseases	69
(8)	Typical Formula of Sabouraud dextrose agar medium	71
(9)	Ingredients of BACTEC Mycosis-IC/F culture vial	72
(10)	Characteristics of 31 patients at high risk for IA	88
(11)	Results of sputum culture, blood culture and GM assay	90

(12)	Classification of patients according to EORTC/MSG criteria	92
(13)	The 4 patients positive for <i>Aspergillus</i> galactomannan antigen in serum	94

List of Figures

Figure	Subject	Page
(1)	Diagram of Aspergillus Structure	10
(2)	Macroscopic picture A.fumigatus, A. flavus A. niger & A. terreus	12
(3)	Microscopic picture of A. fumigatus, A. flavus A. niger & A. terreus	13
(4)	Schematic representation of invasive <i>Aspergillus</i> infection.	17
(5)	Electron micrographshowing thestructure of the fungal cell wall	23
(6)	Transverse CT scan shows several nodules exhibiting the halo sign	50
(7)	The air crescent sign	51
(8)	chest-CT scan shows segmental consolidation in the right upper pulmonary lobe, accompanied by discrete halo sign	52
(9)	Axial CT scan shows solitary pulmonary nodule with cavitation in the right upper lung lobe	52
(10)	Aspergillus fumigatus on SDA	79
(11)	Aspergillus niger on SDA	80

(12)	Aspergillus flavus on SDA	81
(13)	Classification of patients according to EORTC/MSG criteria for diagnosis of IA	93
(14)	OD values of serum GM of the positive cases	95
(15)	Urinary galactomannan of cases (31) versus controls (5)	96
(16)	Urinary galactomannan of possible Cases (27) versus proven and probable Cases (4)	97
(17)	Scatter plot of serum index versus urine index	98

INTRODUCTION

Invasive aspergillosis (IA) is the most common fungal infection in severe immunocompromised patients, such as bone marrow transplant recipients and patients who have received extensive chemotherapy for hematologic malignancies. Patients with solid tumors are also at risk for IA (**Kiertiburanakul et al., 2007**).

The presenting symptoms of invasive aspergillosis are nonspecific and the gold standard for establishing the diagnosis is invasive procedures relying on tissue biopsy or histopathological specimens. These lead to difficulty in making the diagnosis (**Hachem et al., 2009**).

Techniques to improve timely diagnosis have focused on the detection of circulating Aspergillus markers, including DNA, galactofuranose (galf) antigens {e.g., galactomannan}, and 1,3-β-D-glucan (BG). The galf antigen enzyme-linked immunosorbent assay (ELISA) is the most widely used assay because it is standardized and commercially available, unlike DNA detection assays. Furthermore, circulating Aspergillus antigen can be detected at an early stage of infection in patients with IA. On the other hand, the release of DNA might depend on the immune status of the host and is likely to be negligible course of during the early infection in severely

immunocompromised patients. The Fungitell BG test seems quite promising. However, the assay is not specific for *Aspergillus* species, and the value of the test for early diagnosis of IA has yet to be determined (Mennink-Kersten et al., 2008).

Galactomannan (GM) is a cell wall polysaccharide released by growing *Aspergillus* hyphae. Circulating galactomannan may be detected at a median of 5–8 days (range, 1–27 days) before clinical signs and symptoms of invasive aspergillosis become evident (**Klont et al., 2004**). Furthermore serum GM antigenemia correlates with tissue fungal burden, increasing with progressive disease and declining with effective antifungal therapy and may therefore be used to monitor the patient's response to treatment (**Koo et al., 2010**).

A commercially available double-sandwich enzymelinked immunosorbent assay Platelia *Aspergillus* detects this polysaccharide cell wall component. This method detects the *Aspergillus* GM with a limit ranging from 0.5 to 1 ng of GM per ml of serum, making this assay 15 to 30 times more sensitive than the former latex agglutination assay (**Bart-Delabesse et al., 2005**).

The reported sensitivity of Platelia ELISA was variable, with a range from 30% to 100%, and the specificity ranges from 38% to 98% (**Hachem et al., 2009**).

Introduction

Because galactomannan is a water-soluble carbohydrate, it can be detected in samples of other fluids obtained from patients with invasive aspergillosis, including urine, CSF, pleural fluid, and bronchoalveolar lavage (BAL) (**Klont et al., 2004**).

AIM OF THE WORK

The aim of this work is to evaluate *Aspergillus* galactomannan detection by ELISA as a rapid screening method for early diagnosis of invasive aspergillosis in febrile neutropenic patients both in serum and urine and also, to compare the sensitivity of its detection in urine to that of serum.