Ischemia Modified Albumin as a Marker of Oxidative Stress in Infants of Diabetic Mother: Relation to Lipid Peroxidation and Maternal Glycemic Control

Thesis

Submitted for the Partial Fulfillment of Master Degree in Pediatrics

[®]γ Khaled Yousry Hassan

M.B.B.Ch., 2012 Ain Shams University

Under Supervision of

Dr. / Rania Ali El-Farrash

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. / Eman Abdel Rahman Ismail

Consultant of Clinical Pathology Faculty of Medicine - Ain Shams University

Prof. / Ahmed Shafik Nada

Professor of Physiology National Center for Radiation Research and Technology Atomic Energy Authority

Faculty of Medicine - Ain Shams University
2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr.** / **Rania** Ali El
Tarrash, Assistant Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr.** / **Eman Abdel Rahman Ismail,** Consultant of Clinical Pathology,

Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** / **Alhmed Shafik** Mada, Professor of Physiology, National
Center for Radiation Research and Technology, Atomic
Energy Authority for his great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Khaled Yousry Hassan

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Abstract	vii
Introduction	1
Aim of the Work	
Review of Literature	
Infant of Diabetic Mother	5
I- Incidence	
II- Pathogenesis	6
III- Complications	8
Diabetes mellitus and oxidative stress	25
Oxidative Stress	26
I. Types of reactive species	27
II. Sources of reactive species	28
III. Anti-oxidant Mechanisms	
IV- Total antioxidant capacity (TAC)	38
Oxidative Stress-Induced Cellular Damage	
I. The targets of ROS damage	39
II. Oxidative Stress and Human Disorders	45
Ischemia Modified Albumin	48
I. Introduction	48
II. Human serum albumin	49
Patients and Methods	58
Results	71
Discussion	90
Summary	101
Conclusions	104
Recommendations	105
References	106
Arabic Summary	

List of Tables

Table No.	Title Pag	ge No.
Table (1):	Pathologic conditions and clinical	
T 11 (0)	problems in infants of diabetic mothers	
Table (2):	Reactive oxygen species (ROS)	
Table (3):	Reactive nitrogen species	
Table (4):	Clinical and laboratory data among	
	diabetic mothers and control group	72
Table (5):	Clinical data among infant of diabetic	
	mothers and control group	74
Table (6):	Hematological and biochemical data	
	among infants of diabetic mothers and	
	control group	76
Table (7):	Levels of TAC and MDA in relation to	
	maternal clinical characteristics and	
	neonatal sex among infant of diabetic	
	mothers	79
Table (8):	IMA levels in relation to maternal	
_ = = = = = = = = = = = = = = = = = = =	clinical characteristics and neonatal sex	
	among infant of diabetics group	81
Table (9):	Correlation between TAC and MDA	
Table (b).	levels and laboratory variables among	
	infants of diabetic mothers	89
Table (10):	Correlations between IMA levels and	02
1 able (10):		
	clinical and laboratory variables among	9.0
m 11 (11)	Infants of diabetic mothers	
Table (11):	Multivariable linear regression analysis	
	of factors affecting IMA levels among	
	infant of diabetic mothers	89

List of Figures

Fig. No.	Title	Page No.	
D' (1)	Dedha da dalam C 1 1 1	1	
Figure (1):	Pathophysiology of perinatal childhood morbidity in IDM		8
Figure (2):	Mechanism by which hyperglycemia		
	to dysmorphogenesis		21
Figure (3):	Reactions of ROI and RNI with pro	teins,	
	carbohydrates and lipids, with conse	_	
	alteration both in the intracellular		
	intercellular homeostasis until possibl		
	death and regeneration		
Figure (4):	Antioxidant defense system		29
Figure (5):	Pathways of reactive oxygen sp		
 (a)	(ROS) production and clearance		
Figure (6):	Antioxidant enzyme systems		
Figure (7):	Malondialdehyde		
Figure (8):	Oxidative stress and various antioxida		45
Figure (9):	Deleterious effects of oxidative stre		4 77
E. (10)	human health		47
Figure (10):	The albumin cobalt binding (ACB) te		
	indirect measure of ischemia-mo		49
Figure (11).	album (IMA)		49
Figure (11):	Crystal structure of HSA highlighting of residues of importan		
	its esterase-like activity		50
Figure (12):	Human serum albumin is provided		50
1 1gure (12).	series of oncotic and non-or		
	properties		54
Figure (13):	Mechanism of Ischemia Mo		-
g 0 (10)	Albumin generation		56
Figure (14):	Comparison between diabetic mo		
8 , ,	and control groups regarding mo		
	delivery		73
Figure (15):	Birth weight among infant of dia	abetic	
_	mothers and control group		75

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (16):	Occiptofrontal circumference	_	
	infant of diabetic mothers and		75
Figure (17):	group Total antioxidant capacity among		10
rigure (17).	of diabetic mothers and control gro		77
Figure (18):	Malondialdehyde levels among in	-	
g • (e,,	diabetic mothers and control group		78
Figure (19):	Levels of ischemia modified a		
	among infant of diabetic mothe	rs and	
	control group.		78
Figure (20):	TAC levels in relation to mode of t		
	among diabetic mothers		80
Figure (21):	Correlation between maternal HbA		
	TAC levels among infant of d		0.0
Figure (99).	mothersCorrelation between maternal HbA		83
Figure (22):	MDA levels among infant of o		
	mothers		84
Figure (23):	Correlation between maternal TAG		0 1
g (),	and birth weight among infant of o		
	mothers		84
Figure (24):	Correlation between TAC and IMA	A levels	
	among infant of diabetic mothers		85
Figure (25):	Correlation between IMA level		
	maternal RBG among infant of d		0=
F' (90)	mothers.		87
Figure (26):	Correlation between IMA level		
	maternal HbA1c among infant of c		27
Figure (27):	Correlation between IMA and		01
- 18410 (21)	levels among infant of diabetic mot		88

List of Abbreviations

Abb.	Full term
2 3-DPG	2, 3-diphosphoglycerate
	2, 6 diphosphoglycerate 8-hydroxy-2'- deoxyguanosine
	Albumin cobalt binding
	Advanced glycation end-products
	Advanced lipoxidation end-products
	Adenosine monophosphate nucleoside
	5' AMP-activated protein kinase
	Advanced Oxidation Protein Products
Co	
CoA	Coenzyme A
Cu	Copper
<i>DM</i>	Diabetes mellitus
<i>DTT</i>	Dithiothre itol
Fe	iron
<i>GDM</i>	Gestational diabetes mellitus
<i>GPX</i>	Glutathione peroxidases
<i>GSH</i>	Glut athione
<i>GSSG</i>	Glutathione disulphide
H2O2	Hydrogen peroxide
HbA1c	Hemoglobin A1c
<i>Hgb</i>	Hemoglobin
<i>HSA</i>	Human serum albumin
<i>IDMs</i>	$ In fants\ of\ diabetic\ mothers$
<i>IL</i>	Interleukin
<i>IMA</i>	Ischemia modified albumin
<i>LGA</i>	Large for gestational age
<i>MDA</i>	Malon dial de hyde
NF-κB	$K appa-light-chain-enhancer\ of\ activated\ B$ $cells$

List of Abbreviations (Cont...)

Abb.	Full term
Ni	Nickel
<i>NO</i>	Nitric oxide
<i>NOX</i>	NADPH oxidase
<i>NTS</i>	N-terminal binding site
<i>OS</i>	Oxidatitve stress
Pax 3	Paired box 3 gene
<i>RNS</i>	Reactive Nitrogen Species
<i>ROS</i>	Reactive oxygen species
<i>SOD</i>	Superoxide dismutase
<i>TBA</i>	Thiobarbituric acid
TBARS	Thiobarbituric reactive substances

Abstract

Background: Oxidative stress can play an important role in the pathogenesis of diabetes mellitus (DM), gestational DM and in the development of maternal and fetal complications of diabetic pregnancies. Ischemia modified albumin (IMA) is an altered type of serum albumin that forms under conditions of oxidative stress and is used as an early marker in several pathological conditions including diabetes. Aim: To determine the levels of IMA in infants of diabetic mothers as a marker of oxidative stress and to assess its relation to clinical and laboratory characteristics including lipid peroxidation, total anti-oxidant status, essential trace elements and maternal glycemic control. Methods: This study was conducted on 100 full term neonates delivered at Obstetrics and Gynecology hospital, Ain Shams University; 50 infants were born to diabetic mothers and another 50 age- and sex-matched healthy infants were enrolled as controls. Maternal laboratory investigations included random blood glucose (RBG) and HbA1c. Total antioxidant capacity (TAC), malondialdehyde (MDA), IMA and trace elements (copper, zinc and iron) were measured in cord blood. Results: TAC, copper and zinc were significantly lower while MDA, IMA and iron levels were higher among infants of diabetic mothers than control group. Low TAC levels were found among diabetic mothers on diet without insulin therapy compared with those on insulin therapy. Maternal HbA1c were negatively correlated to TAC while positively correlated with MDA and IMA. IMA was positively correlated to maternal RBG and HbA1c while there were negative correlations between IMA and each of TAC and copper. **Conclusions:** Oxidative stress is enhanced in infants of diabetic mothers as manifested by increased lipid peroxidation and IMA levels. IMA could be useful for detecting the potential oxidative stress among those infants. Increased oxidative stress is accompanied by alterations in the antioxidant defense status. Changes in oxidant-antioxidant balance in infants of diabetic mothers are related to maternal blood glucose and glycemic control. Proper metabolic control among diabetic mothers is mandatory to avoid oxidative stress and its potential harmful effects among their infants

Introduction

liabetes in pregnancy increases perinatal morbidity and mortality of both mother and her newborn. Although hyperglycemia is clearly recognized as the primary culprit in the pathogenesis of diabetic complications, even maximum glycemic control is associated with the development of complications (Rajdl et al., 2005).

Oxidative stress can play an important role in the pathogenesis of diabetes mellitus (DM), gestational diabetes mellitus (GDM) and in the development of maternal and fetal complications of diabetic pregnancies (Matteucci and Giampietro, 2000).

Oxidative stress results from a disparity between the generation of reactive oxygen species (ROS) and the antioxidant ability of the organism. The alteration of the oxidant-antioxidant system brings an effective state of imbalance, which may influence the pathogenesis of many diseases (Chiavaroli et al., 2011).

The current understanding of the complex role of ROS in the organism and pathological sequelae of oxidative stress points to the necessity of comprehensive studies of antioxidant interactions with reactivities and cellular constituents (Augustyniak et al., 2010).

Lipid peroxidation is a well-established mechanism of cellular injury in both plants and animals, and is used as an indicator of oxidative stress in cells and tissues (El-Beltagi and *Mohamed*, 2013). Malondialdehyde (MDA) has been widely used as a convenient biomarker for lipid peroxidation of omega-3 and omega-6 fatty acids because of its facile reaction with thiobarbituric acid (TBA) (Ayala et al., 2014).

Ischemia modified albumin (IMA) is an altered type of serum albumin that forms under conditions of oxidative stress (Awadallah et al., 2012). It has been suggested that elevated levels of IMA may reflect a generalized rather than organ- or tissue-specific state of oxidative stress (Borderie et al., 2004). IMA is currently used as an early marker for myocardial ischemia and cardiac damage (Aslan and Apple, 2015; Açıkgöz et al., 2014; Pan and Li, 2016). It is also increased in diabetes mellitus, hyperlipidemia, chronic renal disease, obesity, and others (Borderie et al., 2004; Kaefer et al., 2010; Topaloğlu et al., 2014) and β-thalassemia major patients (Awadallah et al., *2012*).

Human serum contains several antioxidants. Total antioxidant capacity (TAC) assessment is an established methodology of simultaneous measurement of different elements of antioxidant defense system (Gawron-Skarbek et al., 2015). TAC is composed of antioxidant capacity of total protein (85%; mainly albumin), uric acid, bilirubin, carotenoids, tocopherol, and ascorbic acid (Akbayram et al., 2010).

Essential trace elements such as copper (Cu), zinc (Zn), iron (Fe) and others are antioxidant trace elements that are crucial for growth, carbohydrate and protein metabolism, gene transcription, endocrine function and nutrient transport in humans. The altered concentration of essential trace elements could have deleterious influences on the health of diabetic mother as well as the fetus and newborns (Keen et al., 2003; Al- Saleh et al., 2005).

Although pregestational and gestational diabetes mellitus represent increased oxidative stress for both mother and her infant, few studies (Topaloğlu et al., 2014; Mohsen et al., 2017) investigated the role of IMA as a marker of maternalfetal oxidative stress in diabetic mothers and their infants and its possible relation to lipid peroxidation and antioxidant status including essential trace elements among those infants remains to be elucidated.

AIM OF THE WORK

The aim of this study was to determine the levels of IMA in infants of diabetic mothers as a marker of oxidative stress and to assess its relation to clinical and laboratory characteristics including lipid peroxidation, anti-oxidant status, essential trace elements and maternal glycemic control.

INFANT OF DIABETIC MOTHER

espite advances in perinatal care, infants of diabetic mothers (IDMs) remain at risk for a multitude of physiologic, metabolic, and congenital complications (*Hay*, 2012a).

Overt type 1 diabetes around conception produces marked risk of congenital anomalies (neural tube defects, cardiac defects, caudal regression syndrome), whereas later in gestation, severe and unstable type 1 maternal diabetes carries a higher risk of intrauterine growth restriction, asphyxia, and fetal death. IDMs born to mothers with type 2 diabetes are more commonly obese (macrosomic) with milder conditions of the common problems found in IDMs (*Hay*, 2012a).

I- Incidence:

Congenital malformations are frequent in diabetic pregnancies, almost exclusive from mothers with unstable hyperglycemia prior to and around the time of conception and have been related to poor control of maternal diabetes during the periconceptional period and the embryonic period that encompasses organogenesis. The incidence of all congenital malformations may be in excess of 10% in poorly controlled diabetic pregnancies. Most major congenital malformations occur very early in gestation and, therefore, cannot be attributed to fetal hyperinsulinemia. The fetal pancreas does not make