Discriminative value of conservative management of blunt abdominal trauma

THESIS
SUBMITTED FOR THE PARTIAL FULFILLMENT
Of MD. Degree in GENERAL SURGERY

BY
Ramadan Mahmoud Ahmed AbouAhmed
M.B.B.CH

M.SC

SUPERVISED BY

Prof. Dr. Ahmad Alaa-Edeen Abdel Mageed

Professor of general surgery-Faculty of Medicine Ain Shams University

Dr. Mohammad Elsaid ElshenawyDr. Mohammad Elsaid ElshenawyAssist.prssor of general surgeryLecturalFACULTY OF MEDICINEFACULAAin Shams UniversityAin

Dr. Mohammad Ali Nada
Lecturar of general surgery
FACULTY OF MEDICINE
Ain Shams University

AIN SHAMS UNIVERSITY 2015

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, the great thanks to **Allah** the greatest; who enable me to complete this work.

Many thanks to **prof.Dr. Ahmad alaa Edeen aAbdel Mageed,** professor of surgery, faculty of medicine, Ain Shams university, for his supervision and help in completing this work.

Special thanks to **Prof. Dr. Mohammad El Said El Shenawy,** assist. Professor of surgery, faculty of medicine, Ain Shams university, for his kindness, effort and generous advice.

I also express my appreciation and thanks to **Dr. Mohammad Ali Nada**, lecturer of surgery, faculty of medicine, Ain Shams university, for his unlimited support, his keen Supervision and his continuous guidance to develop this work.

My special thicks to my family, without their support this work would not have seen.

CONTENTS

No	Chapter	Page
1	Basic anatomy of the abdomen	5
2	Epidemiology of blunt abdominal trauma	18
3	Metabolic response to trauma	28
4	Management of poly traumatized patient	43
5	Investigations of blunt abdominal trauma	71
6	Scoring systems	99
7	Review of literatures of NOM	107
8	Patients and methods	157
9	Results	159
10	Discussion	173
11	Summary	185
12	Conclusion	187
13	References	189
14	Arabic summary	0_1

LIST OF FIGURES

Fig.No	Title of Fig.	P.
1	Cascade of inflammatory response	36
2	Algorithm of management of stable pt.	70
3	Transducer position in FAST	78
4	FAST free fluid	78
5	Bloody aspirate in DPL	95
6	Hepatic arteriography	98
7	Abdominal CT with contrast	109
8	Abdominal CT with active bleeding	115
9	Hepatic necrosis after hepatic artery embolization	116
10	Picture of laparoscopic evacuation of liver haematoma	121
11	CT of splenic injury	130
12	CT of pancreatic injury	139
13	CT of pancreatic injury	140
14	ERCP	141
15	ERCP	142
16	ERCP with pancreatic duct injury	143
17	CT of duodenal injury	145
18	CT of duodenal haematoma	147
19	Age distribution of studied patients	161
20	Mechanisms of injury in BAT	161

Fig.No.	Title of Fig.	P.
21	Distribution of studied patients according to injured organs	162
22	Distribution of patients according to splenic trauma to fate	165
23	Distribution of patients to outcome	166
24	Relation between outcome and the age of the patients	168
25	Relation between outcome and the mechanism of injury	169
26	Relation between outcome and the types of splenic injury	171
27	Relation between outcome and the grade of splenic	172
	laceration	

List of Tables

Table	Title of table	P.
No.		
1	The 9 regions of the abdomen	7
2	Distribution of patients according to mechanism of injury	19
3	Frequency of organs injury in BAT	21
4	Zones of retroperitoneal haematoma	24
5	Glasgow coma scale in adult	55
6	Grades of hypovolaemic shock	60
7	Glasgow coma scale in adult and infant	100
8	Liver injury scale	102
9	Splenic injury scale	103
10	Kidney injury scale	104
11	Duodenal injury scale	103
12	Abdominal vascular injury scale	105
13	Relation between the grade of organ injury and duration of hospital stay	114
14	Grade of intra-abdominal pressure	154
15	Age distribution of studied patients	160
16	Distribution of patients regarding injured organs	162
17	Distribution of splenic injury patients to type of injury	163
18	Distribution of liver injury pt. to type of injury	164
19	Relation of splenic injury to fate	164
20	Distribution of all studied patients to outcome	166

Table	Title of table	P.
No.		
21	Relation between outcome and the age of the patients	167
22	Relation between outcome and the mechanism of injury	168
23	Relation between the outcome and the injured organs	170
24	Relation between the outcome and type of splenic injury	170
25	Relation between the outcome and the grade of splenic laceration	171

List of Abbreviations

AAST	American association for the surgery of Trauma
AIS	Abbreviated injury scale
BAT	Blunt Abdominal Trauma
CT	Computed Tomography
DPL	Diagnostic Peritoneal Lavage
ED	Emergency Department
FAST	Focused Abdominal Sonogram For Trauma
GCS	Glasgow Coma Scale
ICU	Intensive Care Unite
ISS	Injury Severity Scores
OIS	Organ Injury Scale
OPSI	Over Whelming Post Splenectomy Infection
SNOM	Selective Non Operative Management
SP	Survival Probability

Introduction

Trauma remains the most common cause of death for all age groups between the age 1-44 years and it is the third most common cause of death regardless of age. (Walter. 2010).

Ten percent of trauma deaths results from abdominal injuries which may be blunt in 84% of cases or penetrated in 16%. Early detection of these life threatening injuries is the most important factor in decreasing incidence of death due to intra-abdominal trauma. (Soynucu, et al., 2007)

The most commonly injured organs are liver, spleen, kidney, small bowel, diaphragm, urinary bladder and pancreas. (Udeani., et al.,2008)

Blunt abdominal injury is caused by one or combination of the following forces, direct impact, acceleration deceleration injuries, rotational and shear forces, all these mechanisms depend on the mode of energy transfer. (Trunkey., 1992).

The abdomen is a diagnostic black box. Fortunately with few exceptions, it is not necessary to determine which intra-abdominal organs are injured, only whether an exploratory laparotomy is necessary. Physical examination of the abdomen is unreliable in making this determination, and drugs, alcohol, and head and spinal cord injuries complicate clinical evaluation. However the presence of abdominal rigidity or hemodynamic compromise is an indication for prompt surgical exploration. For the

remainder of patients, a variety of diagnostic approach are applied for blunt abdominal trauma. (Walter L., 2010)

Diagnostic peritoneal lavage (DPL), focused abdominal sonography for trauma (FAST) and computed tomography (CT) are typical tests used for abdominal evaluation in trauma; focused abdominal sonography for trauma (FAST) has been shown to be as accurate as diagnostic peritoneal lavage and CT in detection of haemo-peritoneum after abdominal trauma. (Chang., et al.,2005)

Blunt abdominal trauma initially is evaluated by focused abdominal sonography for trauma (FAST) examination and this has largely supplanted diagnostic peritoneal lavage (DPL). Focused abdominal sonography for trauma (FAST) examination is used to identify free intra-peritoneal fluid in Morrison s pouch, the left upper quadrant, and pelvis. Although this method is exquisitely sensitive for detecting intra-peritoneal free fluid of more than 250 ml it does not reliably neither determine the source of hemorrhage nor grade solid organ injuries. Patients with fluid in focused abdominal sonography for trauma (FAST) examination are considered appositive FAST and those who don't have immediate indication for laparotomy, undergo CT scanning to quantify their injuries. (Walter., 2010)

CT imaging is the diagnostic tool of choice for evaluation of abdominal injury due to blunt abdominal trauma in haemodynamically stable patients CT scan can provide a rapid and accurate appraisal of the abdominal viscera, retro-peritoneum and abdominal wall.(Hassan and Aziz.,2010)

Follow up CT is useful to help making clinical decisions when adopting a conservative approach, it allows adequate assessment of retroperitoneal structures and this is a major advantage over other modalities. Furthermore it allows the assessment of blood perfusion of different organs. (Eiton., 2005)

The presence of free intra-peritoneal fluid in blunt abdominal trauma in absence of detectable solid organ injury creates a clinical dilemma. There is a probability of 25% of missing bowel lesion. DPL is advised in that situation if a conservative approach is advocated. (Rodriguez, et al.,2002).

Nowadays, conservative treatment is preferred in cases of blunt abdominal trauma as 80% liver injury; more than 50% splenic and virtually all renal injury are managed non operatively. (Aecher., 1996)

AIM OF THE WORK

This work aims to evaluate the success of the conservative (non-operative) management as a line of management of stable or easily stabilized blunt abdominal trauma patients and to identify its complications.

Abdominal anatomic boundaries:

The diaphragm

The diaphragm is a musculo-membranous entity separating the thorax from the abdomen. The muscular part originates anteriorly from the xiphoid process, laterally from the inner surface of the six lower cartilages, and posteriorly from the medial and lateral lumbo-sacral arches, the median arcuate ligament, and the bodies of the three upper lumbar vertebrae. The muscular part inserts on the central tendon. (*Moore et al, 2010*)

Surface landmarks of abdominal wall (Keith and Anne, 2007):

• Xiphoid process

This is the thin cartilaginous lower parts of the sternum.

The xiphoid junction is identified by feeling the lower edge of the body of the sternum and it lies opposite the body of 9th thoracic vertebrae.

• Costal margin

This is the curved lower margin of the thoracic wall and is formed in front by cartilages of the 7th, 8th, 9th, 10th ribs and behind by the cartilages of 11th and 12th ribs. It lies opposite the body of 3rd lumbar vertebra.

• Iliac crest

This can be felt along entire length and ends in front at the anterior superior iliac spine (ASIS) and behind at the posterior superior iliac spine (PSIS). It highest point lies opposite the body of 4th lumbar vertebrae.

• Pubic tubercle

It's important surface landmark, it may be identified as small protuberance along the superior surface of the pubis.

• Symphysis pubis

It's the cartilaginous joint that lies in the midline between the bodies of the pubic bones. It's felt as solid structure beneath the skin in the midline at the lower extremity of anterior abdominal wall.

• Inguinal ligament

This ligament lies beneath skin crease in the groin. It's the rolled inferior margin of the aponeurosis of external oblique muscle. It's attached laterally to the anterior superior iliac spine (ASIS) and it curves downward and medially to be attached to the pubic tubercle.

Abdominal regions (Standring, 2008):

There are two vertical and two horizontal planes divide the abdomen into nine regions.

The vertical plane:

They are right and left lateral planes each is drawn vertically from the mid-clavicular point to mid-inguinal point.

The horizontal plane

I. Sub-costal plane: It is drawn transversely at the lowest points of the costal margin, at the lower border of the 10^{th} costal cartilage (level with the body of L_3 vertebra).