STUDIES ON MICROBIAL DETERIORATION OF ARCHAEOLOGICAL MARBLE AND METHODS OF TREATMENT

By

FATMA MAHROUS FAHEIM EL-WEKEEL

B. Sc (Biochemistry and Nutrition), Ain Shams University, 2000.

A thesis submitted in partial fulfillments of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agricultural Microbiology)

Department of Agricultural Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON MICROBIAL DETERIORATION OF ARCHAEOLOGICAL MARBLE AND METHODS OF TREATMENT

By

FATMA MAHROUS FAHEIM EL-WEKEEL

B. Sc (Biochemistry and Nutrition), Ain Shams University, 2000.

This thesis for M. Sc. degree has been approved by:

Dr. Wafica Noshy Wahba Prof. of Antquities conservation, Deputy of Archaeology faculty, Cairo University. Dr. Mahmoud Mohamed Zaki Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. Dr. ELshahat M.Ramadan Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. Dr. Abd EL-Mohsen A. Abd-Alla Prof. Emeritus of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 9/9/2012

STUDIES ON MICROBIAL DETERIORATION OF ARCHAEOLOGICAL MARBLE AND METHODS OF TREATMENT

By

FATMA MAHROUS FAHEIM EL-WEKEEL

B. Sc (Biochemistry and Nutrition), Ain Shams University, 2000.

Under the supervision of:

Dr. ELshahat M.Ramadan

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University. (Principal Supervisor).

Dr. Abd EL Mohsen A. Abd-Allah

Prof. Emeritus of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

Dr. Ahmed Abdelwahab Mohamed Abdelhafez

Associate Prof. of Agricultural Microbiology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Fatma Mahrous Faheim El-Wekeel: Studies on Microbial Deterioration of Archaeological Marble and Methods of treatment. Unpublished M.Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2012.

Microbial deterioration of archeological marble was studied on various samples of ancient marble of Egyptian history and methods for treatment were suggested. Sample were taken by swabs from three locations in Cairo; Mohamed Ali palace, El-Ghory Mosque and El-Kady Abdel-Baset Mosque. Sampling resulted in 110 microbial isolates containing fungi, bacteria and algae. These isolates were identified as 18 fungal genera, 3 bacterial and one actinomycetes genus. Growth kinetics was determined for bacterial and fungal isolates. All microbial isolates were allowed to grow on different media containing marble as a carbon source. The growth and development of these microbial isolates was controlled by determination of inhibitory concentration of five antimicrobial agents. Colored spots, caused by microbial growth, were treated by different synthetic and natural chemical substances. Chemical and physical properties of marble samples were determined as a function of microbial infection.

Key words: Archeological marble, Microbial deterioration of marble, physicochemical properties of marble, deteriorating factors.

ACKNOWLEDGEMENT

All Praise and thanks be to **ALLAH Rab El-Allamin**, the most merciful for directing me to the right way and provides me all I have.

I would like to express my deepest and sincere and appreciate gratitude to **Prof Dr. EL-Shahat M. Ramadan**. Professor of Microbiology, Faculty Of Agriculture, Ain Shams University, Cairo, Egypt., for his kind supervision, guidance, valuable help, continuous support and encouragement, valuable technical advice and useful discussion during the study and the preparation of this manuscript.

I owe my sincere thanks to **Prof Dr. Abed EL-Mohsen A. Abed Alla.** Professor of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt., for his kind supervision guidance and encouragement during the study and the preparation of this manuscript.

I owe my sincere thanks to **Dr. Ahmed Abdelwahab Abdelhafez**, associate professor of Microbiology, Faculty of Agriculture, Ain Shams University, for his guidance and encouragement during the study and the preparation of this manuscript.

Dedication

To everybody who helped me in this work. With Admiration, Appreciation and Respect.

CONTENTS

		Page
	LIST OF TABLES	V
	LIST OF CHARTS	VIII
	LIST OF FIGURES	IX
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
	2.1. Origin of limestone and marble	4
	2.2. Marble deterioration and features	4
	2.3. Sources of stone deterioration	5
	2.4. Microbial deterioration of rocks	7
	2.5. Microbial mechanisms of deterioration of inorganic substrates	8
	2.5.1. Deterioration of marble by Fungi	9
	2.5.2. Deterioration of marble by Bacteria	12
	2.5.3.Deterioration of marble by Algae and Cyanobacteria	13
	2.6. Factors affecting marble deterioration	14
	2.6.1. Hard rain	14
	2.6.2. Microclimate of Structure's rock	15
	2.6.3. Crack attack	17
	2.6.4. Physical and chemical properties	17
	2.6.5. Pollution and biofilm	17
	2.6.6. Other factors	18
	2.7. Control and eradication of biodeterioration produced by fungi	19
	2.8. Use of Microcides for treatment of antiques	21
	2.9. Methods of conservation	24
	2.10 Chemical Treatment	25

3. MATERIALS AND METHODS	27
3.1. Sampling	27
3.2. Media used	27
3.3. Identification of microbial isolates	29
3.3. 1. Identification of bacteria	29
3.3. 2. Identification of Actinomycetes	29
3.3. 3. Identification of fungi	30
3.3. 4. Identification of algae	30
3.4.Optimization of growth of microbial strains isolated from marble samples	30
3.5. Cultivation of bacterial isolates	31
3.5.1.Determination of the growth of bacterial isolates over time	31
3.5.2. Effect of heavy metals on bacterial growth	31
3.6. Cultivation of fungal isolates	32
3.6.1. Determination of growth curve of fungal isolates	32
3.6. 2. Determination of dry weight of fungal isolates	32
3.7. Determination of minimal inhibitory concentration (MIC) of antimicrobial agents on isolated microorganisms	32
3.8.Preparation of fungal spore suspension. Dox,s agar	34
3.9.Effect of microbial Infection on marble properties and treatment	34
3.9.1.Infection of new marble with the isolated microbial	34
3.9.2.Effect of microbial infection on marble physical and chemical properties.	35
3.10. Physicochemical properties	35
3.10.1. Specific gravity	35
3.10.2. Water absorption	36

3.10.3. Chemical properties	37
3.11. Treatment the infected marble	37
4. RESULTS AND DISCUSSION	39
4.1. Sampling	39
4.2. Identification of the microbial isolates	39
4.2.1. Identification of isolated fungi	44
4.2.1.1. Acremonium fusidioides.	47
4.2.1.2. Acremonium kiliense.	47
4.2.1.3.Acremonium murorum.	47
4.2.1.4. Alternaria alternate.	49
4.2.1.5. Aspergillus clavatus	49
4.2.1.6. Aspergillus flavus	49
4.2.1.7. Asperigilus fumigatus	51
4.2.1.8. Asperigillus humicola	51
4.2.1.9. Asperigillus niger	51
4.2.1.10. Asperigillus oryzae	53
4.2.1.11. Asperigillus parasiticus	53
4.2.1.12. Aspergiullus sulphureus	53
4.2.1.13. Cladosporium herbarum	53
4.2.1.14. Fusarium oxysporum	55
4.2.1.15. Penicillium oxalicum	55
4.2.1.16. Penicillium stoloniferum	55
4.2.1.17. Rhizopus oryzae	57
4.2.1.18. Stachybotrys chartarum	57
4.2.2. Bacterial isolates	57
4.2. 2.1. Bacillus brevies	57
4.2. 2.2. Bacillus coagulans	59
4.2.2.3. Streptococcus thermophilus	59
4.2.2.4. Nocardia asteroides	59

	4.2.3. Algal isolates	61
	4.2.3.1. Anabaena	61
	4.2.3.2. Calothrix	61
	4.2.3.3. Oscillatoria	61
	4.2.3.4. Chlorococcum	61
	4.2.3.5. Chlamydomonas	63
	4.2.3.6. Volvox	63
	4.3. Cultivation of bacterial isolates	63
	4.4.Cultivation of fungal isolates on media containing marble	64
	4.5. Growth of fungal species on PDA medium	64
	4.5.1. Determination of growth dry weight of fungal isolates	73
	4.6. Determination of minimal inhibitory concentration (MIC) of antimicrobial agents against fungal species	74
	4.7. Determination of minimal inhibitory concentration (MIC) of antimicrobial agents against isolated bacteria and actinomycetes.	79
	4.8. Effect of microbial Infection on marble physical and chemical properties	82
	4.9. Treatment of the infected marble sample	86
5.	SUMMARY	88
6.	General conclusion	91
7.	Recommendation	92
8.	REFERENCES	93
	ARARIC SUMMARY	

LIST OF TABLES

No. 1.	List of all media used for growth, preservation or identification of microbial isolates obtained from marble samples.	Pages
2.	Total count of microbial swabs cited from three locations cultivated on Czapek's medium for fungi, nutrient medium for bacteria, and Starch nitrate medium for actinomycetes.	4.
3.	Identification of fungal isolates based on morphology.	4.
4.	Identification of <i>Aspergillus</i> species of microbial swabs based on morphology.	4٢
5.	Identification of Penicillium species based on morphology.	4۲
6.	Total count of <i>Acremonium</i> species obtained from four locations and grown on Czapek's medium.	4٢
7.	Total count of some fungal species of microbial swabs obtained from four samples grown on Czapek's medium.	4٣
8.	Total count of bacterial and acteinomycetes isolated from three locations and grown on Nutrient medium for bacteria and Starch nitrate medium for actinomycetes.	4٣
9.	Characterization of bacterial and actinomycetes isolates according to Bergey's Manual of systematic Bacteriology (1986, V2) and (1989, V4) and Cowan and Steels (1974).	40
10.	Identification of algal isolates from the infected marble.	4٦
11.	Growth development of three bacterial species grown in nutrient broth medium for 84h at 30 °C.	60
12.	Effect of heavy metals on the growth of isolated bacterial strains grown in nutrient agar containing 5ppm of Zn, Fe, Cu or Hg and incubated for 5days at 28°C.	6°

13a.	Growth development of isolated fungi grown on media containing marble from 1-7 days.	6٦
13b.	Growth development of isolated fungi grown on media containing marble from 1-7 days (contained).	6 ^y
14.	Growth of fungal species on PDA medium and determination of colony diameter (mm) over 7 days.	٦٨
15.	Determination of dry weight (g/ 100 ml media) of fungal species grown on Dox's minerals for 7 days.	71
16.	Determination of inhibition zone (mm) of fungal species grown on Czapek's medium as affected by Dichloroxylenol concentration (ppm):	70
17.	Determination of inhibition zone (mm) of fungal species grown on Czapek's medium as affected by Thymol concentration (ppm).	70
18.	Determination of inhibition zone (mm) of fungal species grown on Czapek's medium as affected by pentachlorophenol concentration (ppm).	7
19.	Determination of inhibition zone (mm) of fungal species grown on Czapek's medium as affected by Sodium azide concentration (ppm).	7
20.	Determination of inhibition zone (mm) of fungal species grown on Czapek's medium as affected by <i>p</i> -cresol concentration (ppm).	٧٨
21.	Ideal fungicide concentration (ppm) used for inhibiting the fungal species grown on Czapek's agar medium.	٧٨
22.	Determination of inhibition zone (mm) of bacterial and actinomycetes species as affected by Dichloroxylenol concentration (ppm).	81
23.	Determination of inhibition zone (mm) of bacterial and actinomycetes species as affected by Thymol concentration (ppm).	81

24.	Determination of inhibition zone (mm) of bacterial and actinomycetes species as affected by penta-chlorophenol concentration (ppm).	81
25.	Determination of inhibition zone (mm) of bacterial and actinomycetes species as affected by Sodium azide Concentration (ppm).	81
26.	Determination of inhibition zone (mm) of bacterial and actinomycetes species as affected by para-cresol concentration (ppm).	8٣
27.	Ideal bacteriocide concentration (ppm) used for each bacterial and actinomycetes species.	87
28.	Changes in physical properties of marble stone before and after microbial attack over one year.	8٣
29	Effect of selected five microcodes on infected marble after treated by 48 hours, 3 months and 6 months.	87
30.	Test of some compounds in decolorization of microbial spots on infected marble surface.	84

LIST OF CHARTS

No.		Page
1.	Percentage representation of bacterial strains isolated from deteriorated marble from three locations.	4٦
2.	Percentage representation of fungal strains isolated from deteriorated marble from three locations.	4٦
3.	Growth development of three bacterial species grown in nutrient broth medium for 84h at 30 °C.	60
4.	Growth of isolated fungal strains on PDA medium and determination of colony diameter (mm) over 7 days.	٦٩
5.	Growth of isolated fungal strains on PDA medium and determination of colony diameter (mm) over 7 days.	٦٩
6.	Growth of isolated fungal strains on PDA medium and	٦٩
7.	determination of colony diameter (mm) over 7 days. Growth of isolated fungal strains on PDA medium and determination of colony diameter (mm) over 7 days.	7•
8.	Growth of isolated fungal strains on PDA medium and determination of colony diameter (mm) over 7 days.	7•
9.	Determination of dry weight (g) of isolated fungal strains grown on Dox's minerals for 7 days.	7٢
10.	Determination of dry weight (g) of isolated fungal strains grown on Dox's minerals for 7 days.	7٢
11.	Determination of dry weight (g) of isolated fungal strains grown on Dox's minerals for 7 days.	7٢
12.	Determination of dry weight (g) of isolated fungal strains grown on Dox's minerals for 7 days.	7۲
13.	Determination of dry weight (g) of isolated fungal strains grown on Dox's minerals for 7 days.	7۲

LIST OF FIGURES

No.		Pages
1a.	Plate of Acremonium fusidioides grown on Dox's ager medium.	٤٨
1b.	Photomicrograph of Acremonium fusidioides showing phialides with fusiform conidia (400X).	٤٨
2a.	Plate of Acremonium kiliense grown on Dox's agor medium.	٤٨
2b.	Photomicrograph of Acremonium kiliense, conidia and chlamydospores (400X).	٤٨
3a.	Plate of Acremonium murorum grown on Dox's ager	٤٨
3b.	medium. Photomicrograph of Acremonium murorum with numerous phialides and conidial heads (400X).	٤٨
4a.	Plate of Alternaria alternata grown on Dox's agar medium.	5.
4b.	Photograph of Alternaria alternata, showing spores and conidophores (X 400).	5•
5a.	Plate of Asp. clavatus grown on Dox's agar medium.	5.
5b.	Photomicrograph of Asp. clavatus conidial head and conidia (400X).	5.
6a.	Plate of Asp. flavus grown on Dox's ager medium.	5.
6b.	Photomicrograph of Asp.flavus showing conidial head (400X).	5.
7a.	Plate of Asp. fumigatus grown on Dox's agar medium.	54
7b.	Photomicrograph of <i>Asp. fumigatus</i> showing conidial head (400X).	51
8a.	Plate of Asp. humicola grown on Dox's ager medium.	54

8b.	Photomicrograph of Asp.humicola conidia and conidophores (400X).	54
9a.	Plate of Asp. niger grown on Dox's ager medium.	57
9b.	Photomicrograph of <i>Asp.niger</i> showing conidial head (400X).	57
10a.	Plate of Asp. oryzae grown on Dox's ager medium.	5٤
10b.	Photomicrograph of $Asp. \ oryzae$ showing conidial heads (400X) .	5٤
11a.	Plate of Asp. parasiticus grown on Dox's ager medium.	5٤
11b.	Photomicrograph of <i>Asp. parasiticus</i> showing conidia and conidial head (400X).	5٤
12a.	Plate of Asp. sulphureus grown on Dox's agar medium.	5٤
12b.	Photomicrograph of <i>Asp. sulphureus</i> showing conidia and conidiaophores (400X).	5 ٤
13a.	Plate of <i>Cladosporium herbarum</i> grown on Dox's agar medium.	57
13b.	Photomicrograph of <i>Cladosporium herbarum</i> , conidia and conidophores (400X).	57
14a.	Plate of Fusarium oxysporum grown on Dox's agar medium.	57
14b.	Photomicrograph of Fusarium oxysporum with short phialides, macro and micro-conidia (400X).	57
15a.	Plate of Pen. oxalicum grown on Dox's agar medium.	57
15b.	Photomicrograph of Pen. oxalicum showing conidia and conidiophores (400X).	57
16a.	Plate of Pen. stoloniferum grown on Dox's agar medium.	٥٨